
Ordinary Differential 
Equations

Modern Techniques in Modelling



Outline for session 1

•  What are ordinary differential equations (ODEs)?
•  How do we use ODEs to model an epidemic?
•  Using the R package deSolve
• Practical: SI, SIR, SEIR models in R
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Ordinary differential equations



Reminder: Difference equations

next 
value

change
in value

current 
value

In the previous session, we explored difference equations:

    𝑆 𝑡 + 1 	 = 	 𝑆 𝑡 	 − 	𝛽	𝑆 𝑡 	𝐼(𝑡)
    𝐼 𝑡 + 1 	 = 	 𝐼 𝑡 	 + 	𝛽	𝑆 𝑡 	𝐼 𝑡 	− 	𝛾	𝐼 𝑡
    𝑅 𝑡 + 1 	 = 	 𝑅 𝑡 	 + 	𝛾	𝐼(𝑡)
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These changes are the interesting part – 
they are what define the behaviour of the system.



Ordinary differential equations

Difference equations
    𝑆 𝑡 + 1 	 = 	 𝑆 𝑡 	 − 	𝛽	𝑆 𝑡 	𝐼(𝑡)
    𝐼 𝑡 + 1 	 = 	 𝐼 𝑡 	 + 	𝛽	𝑆 𝑡 	𝐼 𝑡 	− 	𝛾	𝐼 𝑡
    𝑅 𝑡 + 1 	 = 	 𝑅 𝑡 	 + 	𝛾	𝐼(𝑡)
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Ordinary differential equations have a similar structure, but only 
the rate of change is given:

   ⁄𝑑𝑆(𝑡) 𝑑𝑡 = −𝛽	𝑆(𝑡)	𝐼(𝑡)
   ⁄𝑑𝐼(𝑡) 𝑑𝑡 	= 𝛽	𝑆(𝑡)	𝐼(𝑡) 	− 𝛾	𝐼(𝑡)	
   ⁄𝑑𝑅(𝑡) 𝑑𝑡 = 𝛾	𝐼(𝑡)

The explicit dependence on time is often omitted 
(e.g. S is written instead of S(t))
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Ordinary differential equations have a similar structure, but only 
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Ordinary differential equations

Mathematically, 𝑑𝑋/𝑑𝑡 represents the derivative of X with respect to time 
(i.e. the rate at which X is changing over time).

For example, is S is the number of susceptibles, t is measured in days, and we 
have

    ⁄𝑑𝑆 𝑑𝑡 = −𝛽	𝑆	𝐼 = −2

then this means the number of susceptibles is currently shrinking at a rate of 
2 people per day, and in one day’s time will have around* 2 people fewer.

* not exactly 2, because over the course of that day, the value of −𝛽	𝑆	𝐼 will 
change!

We will look at examples in the next section. 6



How do we model 
an infectious disease outbreak

using ODEs?



Turning a model diagram into ODEs

With variables:
  𝑆 the number of susceptible people
  𝐼 the number of infectious people
 𝑅 the number of recovered people

 𝑁 = 𝑆 + 𝐼 + 𝑅 the total number of people

Let’s look at the “infection” and “recovery” transitions in more detail.
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infection recovery

susceptible infectious recovered

S I R



Turning a model diagram into ODEs
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infection recovery
S I R

Effective contact with 
an infectious person

Rate of effective contact with an infectious person:
A person contacts 𝑐 people per day…
A fraction ⁄𝐼 (𝑆 + 𝐼 + 𝑅) = 𝐼/𝑁	of these contacts are infectious…
A fraction 𝑝 of these contacts with infectious people are effective…
And there are 𝑆 susceptible people in total at risk of infection.

rate(S → I) = 𝑐	× ⁄𝐼 𝑁×	𝑝	×	𝑆



Turning a model diagram into ODEs
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infection recovery
S I R

Effective contact with 
an infectious person

Rate of effective contact with an infectious person:
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A fraction ⁄𝐼 (𝑆 + 𝐼 + 𝑅) = 𝐼/𝑁	of these contacts are infectious…
A fraction 𝑝 of these contacts with infectious people are effective…
And there are 𝑆 susceptible people in total at risk of infection.

rate(S → I) = 𝑐	× ⁄𝐼 𝑁×	𝑝	×	𝑆



Turning a model diagram into ODEs
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infection recovery
S I R

Effective contact with 
an infectious person

Rate of effective contact with an infectious person:
A person contacts 𝑐 people per day…
A fraction ⁄𝐼 (𝑆 + 𝐼 + 𝑅) = 𝐼/𝑁	of these contacts are infectious…
A fraction 𝑝 of these contacts with infectious people are effective…
And there are 𝑆 susceptible people in total at risk of infection.

rate(S → I) = 𝛽	× ⁄𝐼 𝑁×	𝑆        (𝛽 = 𝑐𝑝)



Turning a model diagram into ODEs
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recovery
S I R

Rate of effective contact with an infectious person:
A person contacts 𝑐 people per day…
A fraction ⁄𝐼 (𝑆 + 𝐼 + 𝑅) = 𝐼/𝑁	of these contacts are infectious…
A fraction 𝑝 of these contacts with infectious people are effective…
And there are 𝑆 susceptible people in total at risk of infection.

rate(S → I) = 𝛽	× ⁄𝐼 𝑁×	𝑆        (𝛽 = 𝑐𝑝)

𝛽 ⁄𝐼 𝑁	𝑆



Turning a model diagram into ODEs
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recovery
S I R

Rate of recovery:
Suppose we know the infectious period lasts for 𝑑 days…
Then the rate of recovery is 1/𝑑 per day…
(e.g. if something happens 2x per day, on average it happens every 0.5 days)

And there are 𝐼 infectious people in total at “risk” of recovery.

rate(I → R) = 1/𝑑	×	𝐼

𝛽 ⁄𝐼 𝑁	𝑆

Infectious 
period ends



Turning a model diagram into ODEs
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Turning a model diagram into ODEs
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recovery
S I R

Rate of recovery:
Suppose we know the infectious period lasts for 𝑑 days…
Then the rate of recovery is 1/𝑑 per day…
(e.g. if something happens 2x per day, on average it happens every 0.5 days)

And there are 𝐼 infectious people in total at “risk” of recovery.

rate(I → R) = 𝛾	×	𝐼   (𝛾 = 1/𝑑)

𝛽 ⁄𝐼 𝑁	𝑆

Infectious 
period ends



Turning a model diagram into ODEs
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S I R

Rate of recovery:
Suppose we know the infectious period lasts for 𝑑 days…
Then the rate of recovery is 1/𝑑 per day…
(e.g. if something happens 2x per day, on average it happens every 0.5 days)

And there are 𝐼 infectious people in total at “risk” of recovery.

rate(I → R) = 𝛾	×	𝐼   (𝛾 = 1/𝑑)

𝛽 ⁄𝐼 𝑁	𝑆 𝛾	𝐼



Turning a model diagram into ODEs
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recovery
S I R

Note that above, both transitions are specified as: 
 “rate per person per day” times “number of people at risk”
 infection:  𝛽 ⁄𝐼 𝑁	   times  𝑆
 recovery: 𝛾     times  𝐼

Often in model diagrams, the “number of people at risk” term is omitted, and 
implied by where the arrow is coming from.

𝛽 ⁄𝐼 𝑁	𝑆 𝛾	𝐼

infection



Turning a model diagram into ODEs
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recovery
S I R

Note that above, both transitions are specified as: 
 “rate per person per day” times “number of people at risk”
 infection:  𝛽 ⁄𝐼 𝑁	   times  𝑆
 recovery: 𝛾     times  𝐼

Often in model diagrams, the “number of people at risk” term is omitted, and 
implied by where the arrow is coming from.

𝛽 ⁄𝐼 𝑁 𝛾

infection



Turning a model diagram into ODEs
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recovery
S I R

To turn this into ODEs, we include each rate twice: 
 once negative for the “leaving” (subtracting from) compartment,
 and once positive for the “entering” (adding to) compartment.
 

𝛽 ⁄𝐼 𝑁 𝛾

infection

⁄𝑑𝑆 𝑑𝑡
⁄𝑑𝐼 𝑑𝑡
⁄𝑑𝑅 𝑑𝑡

=
=
=

− ⁄𝛽𝐼 𝑁 𝑆
⁄𝛽𝐼 𝑁 𝑆 −	𝛾𝐼

𝛾𝐼



Turning a model diagram into ODEs
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recovery
S I R

A full ODE model specification has the following elements:
 

𝛽 ⁄𝐼 𝑁 𝛾

infection

⁄𝑑𝑆 𝑑𝑡
⁄𝑑𝐼 𝑑𝑡
⁄𝑑𝑅 𝑑𝑡

=
=
=

− ⁄𝛽𝐼 𝑁 𝑆
⁄𝛽𝐼 𝑁 𝑆 −	𝛾𝐼

𝛾𝐼

𝑁 = 𝑆 + 𝐼 + 𝑅

𝑆 0 = 9,999
 𝐼 0 	= 1
 𝑅 0 = 0

System of ordinary differential equations
 

Initial conditions
 

Parameters
 𝛽 = 0.8
 𝛾 = 0.4

𝑡 ∈ {0, 1, 2, … , 60}
Times to solve system for
 



Turning a model diagram into ODEs
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S I R
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Times to solve system for
 



Solving ODE models in R
with the deSolve package



Using the R package deSolve

• R package which can numerically solve ODEs
• Provides the function ode() to solve your model
• You provide to ode():
• y, initial conditions
• times, time points to solve the system for
• parms, parameters
• func, the system of ODEs as an R function
• (optionally, others we will discuss later…)

• ode() returns a matrix with numerical solutions to the ODEs 
and the times

23



Individuals are either susceptible or infected:

Susceptible individuals become infected via transmission rate 𝛽.

Susceptible Infected (SI) model

S
𝛽 ⁄𝐼 𝑁

I

24

⁄𝑑𝑆 𝑑𝑡
⁄𝑑𝐼 𝑑𝑡

=
=

− ⁄𝛽𝐼 𝑁 𝑆
⁄𝛽𝐼 𝑁 𝑆



Solving SI model using deSolve

–Provide to ode():

• y, initial conditions

Assume we have population of 𝑁 = 100, with 1 infected 
individual: 

N <- 100
I_0 <- 1
S_0 <- N - I_0

y <- c(S = S_0, I = I_0)

25



Solving SI model using deSolve

–Provide to ode():

• times, time points to solve the system for

Let’s solve the equation over a period of 50 days, which 
we will write inside a vector as follows: 

   times <- seq(from = 0, to = 50, by = 1)
   # or times <- 0:50

26



Solving SI model using deSolve

–Provide to ode():

• parms, parameters

We have just one parameter, the transmission rate: 

parms <- c(beta = 0.4)

27



Solving SI model using deSolve

–Provide to ode():
• func, the system of ODEs as an R function 
SI_model <- function(times, state, parms)
{
  # Get variables
  S <- state["S"]
  I <- state["I"]
  N <- S + I
  # Get parameters
  beta <- parms["beta"]
  # Define differential equations
  dS <- -(beta * I / N) * S
  dI <- (beta * I / N) * S
  res <- list(c(dS, dI))
  return (res)
} 28



Solving SI model using deSolve

# Solve equations
output_raw <- ode(y = y, times = times, 
                  func = SI_model, parms = parms)

# Convert matrix to data frame for easier manipulation
output <- as.data.frame(output_raw)

head(output)
##   time        S        I

## 1    0 99.00000 1.000000

## 2    1 98.60400 1.396000

## 3    2 98.05340 1.946605

## 4    3 97.28991 2.710090

## 5    4 96.23525 3.764747

## 6    5 94.78605 5.213953

29



Solving SI model using deSolve

30



Practical 1
Solving ODEs using deSolve



Practical 1

• Objective: Solve SI, SIR, SEIR models using deSolve
• Answer questions 1, 2 and 3
• Question 4, adding vaccination, is optional.

 Note: If you are stuck with a grid of plots in R, use
  par(mfrow = c(1,1))

 to go back to single-plot mode.
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Practical 1: SI model

1a. Increase the initial number of infectious individuals. What happens to the output?

33



Practical 1: SI model

1a. Increase the initial number of infectious individuals. What happens to the output?

The number of infectious 
has a higher starting point, 
but the same growth rate 
from that level, and the 
same endpoint.

34



Practical 1: SI model

1c. Increase the value of the by argument (in the times vector). 
What happens to the output?
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Practical 1: SI model

1c. Increase the value of the by argument (in the times vector). 
What happens to the output?

The solution points become 
more spaced out, but trace 
the same underlying curve.

36



Practical 1: SIR model

2b. Change the value of the transmission rate so that the basic reproduction number is 
less than one, i.e. 𝑅! < 1. What happens to the output? 

    𝛽 = 0.4, 𝛾 = 0.2               𝛽 = 0.19, 𝛾 = 0.2

Recall that for an SIR model, the basic reproduction number 𝑅! = ⁄𝛽 𝛾 . 
When 𝑅! < 1, the epidemic does not take off.

37



Practical 1: SEIR model

3b. How does the model output differ from the SIR model you coded previously? 

Approximately the same number of people get infected, but the epidemic takes 
approximately twice as long; generation interval is twice as long.
See Wallinga and Lipsitch 2007, especially section 3a, for discussion of the generation 
interval, the growth rate and the reproduction number in epidemic models. 38



ODEs session 1 summary

• ODE models are specified in terms of state variables and 
their rates of change
• We have seen how to construct ODE systems starting from a 

flowchart-style model diagram
• To solve an ODE model, we need to provide initial conditions 

for the state variables, parameter values, and times over 
which to solve the model
• We have learned how to use deSolve to solve ODEs in R
• Next session: Advanced use of deSolve.

39



Ordinary Differential 
Equations, session 2

Modern Techniques in Modelling



Outline for session 2

•  Recap on ODEs
•  How does numerical integration work?
•  Advanced use of deSolve
• Practical: time-varying parameters, events, and Rcpp

41



Ordinary differential equations: Recap

42

recovery
S I R

A full ODE model specification has the following elements:
 

𝛽 ⁄𝐼 𝑁 𝛾

infection

⁄𝑑𝑆 𝑑𝑡
⁄𝑑𝐼 𝑑𝑡
⁄𝑑𝑅 𝑑𝑡

=
=
=

− ⁄𝛽𝐼 𝑁 𝑆
⁄𝛽𝐼 𝑁 𝑆 −	𝛾𝐼

𝛾𝐼

𝑁 = 𝑆 + 𝐼 + 𝑅

𝑆 0 = 9,999
 𝐼 0 	= 1
 𝑅 0 = 0

System of ordinary differential equations
 

Initial conditions
 

Parameters
 𝛽 = 0.8
 𝛾 = 0.4

𝑡 ∈ {0, 1, 2, … , 60}
Times to solve system for
 

Starting from the initial conditions, we use numerical integration 
(e.g. with deSolve) to evaluate the variables at times t.
 



How does numerical 
integration of ODEs work?



Numerical integration

Systems of ODEs define curves which usually don’t have analytical solutions.

We use numerical integration to approximate these curves.

Usually done using piecewise polynomials.

Recall – examples of polynomials
 linear   y = ax + b
 quadratic  y = ax2 + bx + c
 cubic   y = ax3 +  bx2 + cx + d

Simplest example: piecewise linear approximation (Euler’s method)

44



Euler’s method

Choose a time step, ∆t.

1. Start at initial point y(0), i.e. t = 0.
2. Use ODEs to get “slope” of function 

at this point (dy / dt).
3. Move forward to t’ = t + ∆t along a 

straight line with this “slope”.
4. Repeat steps 2 - 3.

45
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Euler’s method

Choose a time step, ∆t.

1. Start at initial point y(0), i.e. t = 0.
2. Use ODEs to get “slope” of function 

at this point (dy / dt).
3. Move forward to t’ = t + ∆t along a 

straight line with this “slope”.
4. Repeat steps 2 - 3.

Note: This is very much like pretending 
your ODEs are difference equations! 47



Quadratic method

Instead of a piecewise linear function, 
we can use a piecewise quadratic 
function. 
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Quadratic method

Instead of a piecewise linear function, 
we can use a piecewise quadratic 
function. 

Note that for piece 1, we have a slope 
measurement on the left side and a 
slope measurement on the right side.
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Quadratic method

Instead of a piecewise linear function, 
we can use a piecewise quadratic 
function. 

Note that for piece 1, we have a slope 
measurement on the left side and a 
slope measurement on the right side.

We can use these two 
slopes to construct
a quadratic
piece

                        instead of a linear piece.
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Quadratic method
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Instead of a piecewise linear function, 
we can use a piecewise quadratic 
function. 

Note that for piece 1, we have a slope 
measurement on the left side and a 
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slopes to construct
a quadratic
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                        instead of a linear piece.

And so on…



Quadratic method
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Instead of a piecewise linear function, 
we can use a piecewise quadratic 
function. 

Note that for piece 1, we have a slope 
measurement on the left side and a 
slope measurement on the right side.

We can use these two 
slopes to construct
a quadratic
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                        instead of a linear piece.
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Approximation methods compared

53

In general, the higher degree polynomials we use, the better our 
approximation, at a cost of increased computation.

Example: SIR model, I compartment, ∆t = 10
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Approximation methods compared
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In general, the higher degree polynomials we use, the better our 
approximation, at a cost of increased computation.

Example: SIR model, I compartment, ∆t = 4



Approximation methods compared
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Example: SIR model, I compartment, ∆t = 4



Approximation methods compared
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Approximation methods compared
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In general, the higher degree polynomials we use, the better our 
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Approximation methods compared
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In general, the higher degree polynomials we use, the better our 
approximation, at a cost of increased computation.

Example: SIR model, I compartment, ∆t = 1



Usage in deSolve

In deSolve, we can specify what approximation method we want to use 
with the method argument to ode():

# Solve equations
output_raw <- ode(y = y, times = times, 
                  func = SI_model, parms = parms)
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Usage in deSolve

In deSolve, we can specify what approximation method we want to use 
with the method argument to ode():

# Solve equations
output_raw <- ode(y = y, times = times, 
                  func = SI_model, parms = parms,
                  method = "euler")
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Usage in deSolve

# Solve equations
output_raw <- ode(y = y, times = times, 
                  func = SI_model, parms = parms,

                  method = "euler")

Some common methods:
 "euler"  Euler’s method    Don’t use this!
 "rk4"   4th-order Runge-Kutta  Commonly used, quite good
 "lsoda"  Petzold & Hindmarsh  Robust (and the default);  
             automatic step size

64
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Advanced use of deSolve
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Advanced use of deSolve package

Time-dependent changes to parameters
Events, with or without a “trigger”
Speeding up your model with Rcpp

66



Time dependent parameters

Parameters, like the transmission rate, are “inputs” into the model.

We have been treating these as constants, but they can also vary 
with time.

What are some reasons 
the transmission rate 
might vary over time?

Seasonality…
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Time dependent parameters

Parameters, like the transmission rate, are “inputs” into the model.

We have been treating these as constants, but they can also vary 
with time.

What are some reasons 
the transmission rate 
might vary over time?

Control measures…

68



Time dependent parameters

Parameters, like the transmission rate, are “inputs” into the model.

We have been treating these as constants, but they can also vary 
with time.

What are some reasons 
the transmission rate 
might vary over time?

Behaviour change…

69



Events

With ODEs, changes that happen to state variables are 
fundamentally “smooth” – there are no sudden jumps.
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Events

With ODEs, changes that happen to state variables are 
fundamentally “smooth” – there are no sudden jumps.

What if we need to change the state variables at an instant?

e.g. a new strain of the virus gets 
introduced on November 20…
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Time dependent parameters

SI_model <- function(t, state, parms) {
  # Get variables
  S <- state["S"]
  I <- state["I"]
  N <- S + I
  # Get parameters
  beta <- parms["beta"]  
  # Define differential equations
  dS <- -(beta * S * I) / N
  dI <- (beta * S * I) / N
  res <- list(c(dS, dI))
  return(res)
}

72

Time-dependent parameters can be brought directly into the ODE 
function.



Time dependent parameters

SI_seasonal_model <- function(t, state, parms) {
  # Get variables
  S <- state["S"]
  I <- state["I"]
  N <- S + I
  # Get parameters
  beta_max <- parms["beta_max"]
  period <- parms["period"]
  beta <- beta_max / 2 * (1 + sin(2*pi*t / period))
  # Define differential equations
  dS <- -(beta * S * I) / N
  dI <- (beta * S * I) / N
  res <- list(c(dS, dI))
  return(res)
}
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Using ‘events’ in deSolve

–deSolve has the capability to include ‘events’
– This can be used when you want to change the value of a 

state variable based on some condition
– Events can be specified as a data.frame, or in a function.
– Events can also be triggered by a root function.
• use a data.frame to specify times at which events occur
• use root function to trigger an event based on some condition
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Using ‘events’ in deSolve

– Let’s look at an example of using a root function
–We want to predict infection in a livestock population
• managed births, i.e. birth rate is a function of some target farm size 𝐾
• assume that death occurs at longer time scale than infection, so we 

don’t include it

d𝑆
d𝑡

= 𝑏𝑁(𝐾 − 𝑁)/𝐾 − 𝛽𝑆𝐼/𝑁

d𝐼
d𝑡

= 𝛽𝑆𝐼/𝑁

where 𝑁 = 𝑆 + 𝐼.
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Using ‘events’ in deSolve

We have our model function,

SI_open_model <- function(times, state, parms){
## Define variables
S <- state["S"]
I <- state["I"]
N <- S + I
# Extract parameters
beta <- parms["beta"]
K <- parms["K"]
b <- parms["b"]
# Define differential equations
dS <- b * N * (K - N) / K - ( beta * S * I) / N
dI <- (beta * S * I) / N 
res <- list(c(dS, dI))
return(res)

}
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Using ‘events’ in deSolve

– Our event is going to be a herd cull, removing a fraction 𝜏.

– Firstly, we need to write a function which changes the appropriate 
state variables

event_I_cull <- function(times, state, parms) {
  ## Define variables
  I <- state["I"]
  # Extract parameters
  tau <- parms["tau"]
  
  I <- I * (1 - tau) # cull the infected population
  
  state["I"] <- I
  
  return(state)
}
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Using ‘events’ in deSolve

– Secondly, we need to write a function which triggers the event

root <- function(times, state, parms){
## Define variables
S <- state["S"]
I <- state["I"]
N <- S + I
# Extract parameters
K <- parms["K"]

# Our condition is if more than half of the 
  # target herd size becomes infected; we want
  # our indicator to cross zero when this happens
indicator <- I - K * 0.5)
return(indicator)

}
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Using ‘events’ in deSolve

output_raw <- ode(y = state, times = times, func =
SI_open_model, parms = parameters, method = "lsoda", 
events = list(func = event_I_cull, root = TRUE),

rootfun = root)

What does the output look like?
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Using Rcpp

–Rcpp is an R package that provides an interface between R 
and C++
– The func input in ode can be written in C++
–Overcomes some of R’s speed issues
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Using Rcpp

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
List SIR_cpp_model(NumericVector t, NumericVector state,
                                           NumericVector parms)
{  

// Get variables
double S = state["S"];
double I = state["I"];
double R = state["R"];
double N = S + I + R;

// Get parameters
double beta = parms["beta"];
double gamma = parms["gamma"];

// Define differential equations
double dS = -(beta * S * I) / N;
double dI = (beta * S * I) / N - gamma * I;
double dR = gamma * I;

NumericVector res_vec = NumericVector::create(dS, dI, dR );

List res = List::create(res_vec);

return(res);
}
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Practical part 2



Practical part 2

–Objective: implement SIR with time dependent transmission 
and use the events function in deSolve
–Answer parts I, II
–Part III is optional
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