
Ordinary Differential
Equations

Modern Techniques in Modelling

Outline for session 1

• What are ordinary differential equations (ODEs)?
• How do we use ODEs to model an epidemic?
• Using the R package deSolve
• Practical: SI, SIR, SEIR models in R

1

Ordinary differential equations

Reminder: Difference equations

next
value

change
in value

current
value

In the previous session, we explored difference equations:

 𝑆 𝑡 + 1 	 = 	 𝑆 𝑡 	 − 	𝛽	𝑆 𝑡 	𝐼(𝑡)
 𝐼 𝑡 + 1 	 = 	 𝐼 𝑡 	 + 	𝛽	𝑆 𝑡 	𝐼 𝑡 	− 	𝛾	𝐼 𝑡
 𝑅 𝑡 + 1 	 = 	 𝑅 𝑡 	 + 	𝛾	𝐼(𝑡)

3

= +

These changes are the interesting part –
they are what define the behaviour of the system.

Ordinary differential equations

Difference equations
 𝑆 𝑡 + 1 	 = 	 𝑆 𝑡 	 − 	𝛽	𝑆 𝑡 	𝐼(𝑡)
 𝐼 𝑡 + 1 	 = 	 𝐼 𝑡 	 + 	𝛽	𝑆 𝑡 	𝐼 𝑡 	− 	𝛾	𝐼 𝑡
 𝑅 𝑡 + 1 	 = 	 𝑅 𝑡 	 + 	𝛾	𝐼(𝑡)

4

Ordinary differential equations have a similar structure, but only
the rate of change is given:

 ⁄𝑑𝑆(𝑡) 𝑑𝑡 = −𝛽	𝑆(𝑡)	𝐼(𝑡)
 ⁄𝑑𝐼(𝑡) 𝑑𝑡 	= 𝛽	𝑆(𝑡)	𝐼(𝑡) 	− 𝛾	𝐼(𝑡)	
 ⁄𝑑𝑅(𝑡) 𝑑𝑡 = 𝛾	𝐼(𝑡)

The explicit dependence on time is often omitted
(e.g. S is written instead of S(t))

Ordinary differential equations

Difference equations
 𝑆 𝑡 + 1 	 = 	 𝑆 𝑡 	 − 	𝛽	𝑆 𝑡 	𝐼(𝑡)
 𝐼 𝑡 + 1 	 = 	 𝐼 𝑡 	 + 	𝛽	𝑆 𝑡 	𝐼 𝑡 	− 	𝛾	𝐼 𝑡
 𝑅 𝑡 + 1 	 = 	 𝑅 𝑡 	 + 	𝛾	𝐼(𝑡)

5

Ordinary differential equations have a similar structure, but only
the rate of change is given:

 ⁄𝑑𝑆 𝑑𝑡 = −𝛽	𝑆	𝐼
 ⁄𝑑𝐼 𝑑𝑡 	= 𝛽	𝑆	𝐼	 − 𝛾	𝐼
 ⁄𝑑𝑅 𝑑𝑡 = 𝛾	𝐼

The explicit dependence on time is often omitted
(e.g. S is written instead of S(t))

Ordinary differential equations

Mathematically, 𝑑𝑋/𝑑𝑡 represents the derivative of X with respect to time
(i.e. the rate at which X is changing over time).

For example, is S is the number of susceptibles, t is measured in days, and we
have

 ⁄𝑑𝑆 𝑑𝑡 = −𝛽	𝑆	𝐼 = −2

then this means the number of susceptibles is currently shrinking at a rate of
2 people per day, and in one day’s time will have around* 2 people fewer.

* not exactly 2, because over the course of that day, the value of −𝛽	𝑆	𝐼 will
change!

We will look at examples in the next section. 6

How do we model
an infectious disease outbreak

using ODEs?

Turning a model diagram into ODEs

With variables:
 𝑆 the number of susceptible people
 𝐼 the number of infectious people
 𝑅 the number of recovered people

 𝑁 = 𝑆 + 𝐼 + 𝑅 the total number of people

Let’s look at the “infection” and “recovery” transitions in more detail.

8

infection recovery

susceptible infectious recovered

S I R

Turning a model diagram into ODEs

9

infection recovery
S I R

Effective contact with
an infectious person

Rate of effective contact with an infectious person:
A person contacts 𝑐 people per day…
A fraction ⁄𝐼 (𝑆 + 𝐼 + 𝑅) = 𝐼/𝑁	of these contacts are infectious…
A fraction 𝑝 of these contacts with infectious people are effective…
And there are 𝑆 susceptible people in total at risk of infection.

rate(S → I) = 𝑐	× ⁄𝐼 𝑁×	𝑝	×	𝑆

Turning a model diagram into ODEs

10

infection recovery
S I R

Effective contact with
an infectious person

Rate of effective contact with an infectious person:
A person contacts 𝑐 people per day…
A fraction ⁄𝐼 (𝑆 + 𝐼 + 𝑅) = 𝐼/𝑁	of these contacts are infectious…
A fraction 𝑝 of these contacts with infectious people are effective…
And there are 𝑆 susceptible people in total at risk of infection.

rate(S → I) = 𝑐	× ⁄𝐼 𝑁×	𝑝	×	𝑆

Turning a model diagram into ODEs

11

infection recovery
S I R

Effective contact with
an infectious person

Rate of effective contact with an infectious person:
A person contacts 𝑐 people per day…
A fraction ⁄𝐼 (𝑆 + 𝐼 + 𝑅) = 𝐼/𝑁	of these contacts are infectious…
A fraction 𝑝 of these contacts with infectious people are effective…
And there are 𝑆 susceptible people in total at risk of infection.

rate(S → I) = 𝛽	× ⁄𝐼 𝑁×	𝑆 (𝛽 = 𝑐𝑝)

Turning a model diagram into ODEs

12

recovery
S I R

Rate of effective contact with an infectious person:
A person contacts 𝑐 people per day…
A fraction ⁄𝐼 (𝑆 + 𝐼 + 𝑅) = 𝐼/𝑁	of these contacts are infectious…
A fraction 𝑝 of these contacts with infectious people are effective…
And there are 𝑆 susceptible people in total at risk of infection.

rate(S → I) = 𝛽	× ⁄𝐼 𝑁×	𝑆 (𝛽 = 𝑐𝑝)

𝛽 ⁄𝐼 𝑁	𝑆

Turning a model diagram into ODEs

13

recovery
S I R

Rate of recovery:
Suppose we know the infectious period lasts for 𝑑 days…
Then the rate of recovery is 1/𝑑 per day…
(e.g. if something happens 2x per day, on average it happens every 0.5 days)

And there are 𝐼 infectious people in total at “risk” of recovery.

rate(I → R) = 1/𝑑	×	𝐼

𝛽 ⁄𝐼 𝑁	𝑆

Infectious
period ends

Turning a model diagram into ODEs

14

recovery
S I R

Rate of recovery:
Suppose we know the infectious period lasts for 𝑑 days…
Then the rate of recovery is 1/𝑑 per day…
(e.g. if something happens 2x per day, on average it happens every 0.5 days)

And there are 𝐼 infectious people in total at “risk” of recovery.

rate(I → R) = 1/𝑑	×	𝐼

𝛽 ⁄𝐼 𝑁	𝑆

Infectious
period ends

Turning a model diagram into ODEs

15

recovery
S I R

Rate of recovery:
Suppose we know the infectious period lasts for 𝑑 days…
Then the rate of recovery is 1/𝑑 per day…
(e.g. if something happens 2x per day, on average it happens every 0.5 days)

And there are 𝐼 infectious people in total at “risk” of recovery.

rate(I → R) = 𝛾	×	𝐼 (𝛾 = 1/𝑑)

𝛽 ⁄𝐼 𝑁	𝑆

Infectious
period ends

Turning a model diagram into ODEs

16

S I R

Rate of recovery:
Suppose we know the infectious period lasts for 𝑑 days…
Then the rate of recovery is 1/𝑑 per day…
(e.g. if something happens 2x per day, on average it happens every 0.5 days)

And there are 𝐼 infectious people in total at “risk” of recovery.

rate(I → R) = 𝛾	×	𝐼 (𝛾 = 1/𝑑)

𝛽 ⁄𝐼 𝑁	𝑆 𝛾	𝐼

Turning a model diagram into ODEs

17

recovery
S I R

Note that above, both transitions are specified as:
 “rate per person per day” times “number of people at risk”
 infection: 𝛽 ⁄𝐼 𝑁	 times 𝑆
 recovery: 𝛾 times 𝐼

Often in model diagrams, the “number of people at risk” term is omitted, and
implied by where the arrow is coming from.

𝛽 ⁄𝐼 𝑁	𝑆 𝛾	𝐼

infection

Turning a model diagram into ODEs

18

recovery
S I R

Note that above, both transitions are specified as:
 “rate per person per day” times “number of people at risk”
 infection: 𝛽 ⁄𝐼 𝑁	 times 𝑆
 recovery: 𝛾 times 𝐼

Often in model diagrams, the “number of people at risk” term is omitted, and
implied by where the arrow is coming from.

𝛽 ⁄𝐼 𝑁 𝛾

infection

Turning a model diagram into ODEs

19

recovery
S I R

To turn this into ODEs, we include each rate twice:
 once negative for the “leaving” (subtracting from) compartment,
 and once positive for the “entering” (adding to) compartment.

𝛽 ⁄𝐼 𝑁 𝛾

infection

⁄𝑑𝑆 𝑑𝑡
⁄𝑑𝐼 𝑑𝑡
⁄𝑑𝑅 𝑑𝑡

=
=
=

− ⁄𝛽𝐼 𝑁 𝑆
⁄𝛽𝐼 𝑁 𝑆 −	𝛾𝐼

𝛾𝐼

Turning a model diagram into ODEs

20

recovery
S I R

A full ODE model specification has the following elements:

𝛽 ⁄𝐼 𝑁 𝛾

infection

⁄𝑑𝑆 𝑑𝑡
⁄𝑑𝐼 𝑑𝑡
⁄𝑑𝑅 𝑑𝑡

=
=
=

− ⁄𝛽𝐼 𝑁 𝑆
⁄𝛽𝐼 𝑁 𝑆 −	𝛾𝐼

𝛾𝐼

𝑁 = 𝑆 + 𝐼 + 𝑅

𝑆 0 = 9,999
 𝐼 0 	= 1
 𝑅 0 = 0

System of ordinary differential equations

Initial conditions

Parameters
 𝛽 = 0.8
 𝛾 = 0.4

𝑡 ∈ {0, 1, 2, … , 60}
Times to solve system for

Turning a model diagram into ODEs

21

recovery
S I R

A full ODE model specification has the following elements:

𝛽 ⁄𝐼 𝑁 𝛾

infection

⁄𝑑𝑆 𝑑𝑡
⁄𝑑𝐼 𝑑𝑡
⁄𝑑𝑅 𝑑𝑡

=
=
=

− ⁄𝛽𝐼 𝑁 𝑆
⁄𝛽𝐼 𝑁 𝑆 −	𝛾𝐼

𝛾𝐼

𝑁 = 𝑆 + 𝐼 + 𝑅

𝑆 0 = 9,999
 𝐼 0 	= 1
 𝑅 0 = 0

System of ordinary differential equations

Initial conditions

Parameters
 𝛽 = 0.8
 𝛾 = 0.4

𝑡 ∈ {0, 1, 2, … , 60}
Times to solve system for

Solving ODE models in R
with the deSolve package

Using the R package deSolve

• R package which can numerically solve ODEs
• Provides the function ode() to solve your model
• You provide to ode():
• y, initial conditions
• times, time points to solve the system for
• parms, parameters
• func, the system of ODEs as an R function
• (optionally, others we will discuss later…)

• ode() returns a matrix with numerical solutions to the ODEs
and the times

23

Individuals are either susceptible or infected:

Susceptible individuals become infected via transmission rate 𝛽.

Susceptible Infected (SI) model

S
𝛽 ⁄𝐼 𝑁

I

24

⁄𝑑𝑆 𝑑𝑡
⁄𝑑𝐼 𝑑𝑡

=
=

− ⁄𝛽𝐼 𝑁 𝑆
⁄𝛽𝐼 𝑁 𝑆

Solving SI model using deSolve

–Provide to ode():

• y, initial conditions

Assume we have population of 𝑁 = 100, with 1 infected
individual:

N <- 100
I_0 <- 1
S_0 <- N - I_0

y <- c(S = S_0, I = I_0)

25

Solving SI model using deSolve

–Provide to ode():

• times, time points to solve the system for

Let’s solve the equation over a period of 50 days, which
we will write inside a vector as follows:

 times <- seq(from = 0, to = 50, by = 1)
 # or times <- 0:50

26

Solving SI model using deSolve

–Provide to ode():

• parms, parameters

We have just one parameter, the transmission rate:

parms <- c(beta = 0.4)

27

Solving SI model using deSolve

–Provide to ode():
• func, the system of ODEs as an R function
SI_model <- function(times, state, parms)
{
 # Get variables
 S <- state["S"]
 I <- state["I"]
 N <- S + I
 # Get parameters
 beta <- parms["beta"]
 # Define differential equations
 dS <- -(beta * I / N) * S
 dI <- (beta * I / N) * S
 res <- list(c(dS, dI))
 return (res)
} 28

Solving SI model using deSolve

Solve equations
output_raw <- ode(y = y, times = times,
 func = SI_model, parms = parms)

Convert matrix to data frame for easier manipulation
output <- as.data.frame(output_raw)

head(output)
time S I

1 0 99.00000 1.000000

2 1 98.60400 1.396000

3 2 98.05340 1.946605

4 3 97.28991 2.710090

5 4 96.23525 3.764747

6 5 94.78605 5.213953

29

Solving SI model using deSolve

30

Practical 1
Solving ODEs using deSolve

Practical 1

• Objective: Solve SI, SIR, SEIR models using deSolve
• Answer questions 1, 2 and 3
• Question 4, adding vaccination, is optional.

 Note: If you are stuck with a grid of plots in R, use
 par(mfrow = c(1,1))

 to go back to single-plot mode.

32

Practical 1: SI model

1a. Increase the initial number of infectious individuals. What happens to the output?

33

Practical 1: SI model

1a. Increase the initial number of infectious individuals. What happens to the output?

The number of infectious
has a higher starting point,
but the same growth rate
from that level, and the
same endpoint.

34

Practical 1: SI model

1c. Increase the value of the by argument (in the times vector).
What happens to the output?

35

Practical 1: SI model

1c. Increase the value of the by argument (in the times vector).
What happens to the output?

The solution points become
more spaced out, but trace
the same underlying curve.

36

Practical 1: SIR model

2b. Change the value of the transmission rate so that the basic reproduction number is
less than one, i.e. 𝑅! < 1. What happens to the output?

 𝛽 = 0.4, 𝛾 = 0.2 𝛽 = 0.19, 𝛾 = 0.2

Recall that for an SIR model, the basic reproduction number 𝑅! = ⁄𝛽 𝛾 .
When 𝑅! < 1, the epidemic does not take off.

37

Practical 1: SEIR model

3b. How does the model output differ from the SIR model you coded previously?

Approximately the same number of people get infected, but the epidemic takes
approximately twice as long; generation interval is twice as long.
See Wallinga and Lipsitch 2007, especially section 3a, for discussion of the generation
interval, the growth rate and the reproduction number in epidemic models. 38

ODEs session 1 summary

• ODE models are specified in terms of state variables and
their rates of change
• We have seen how to construct ODE systems starting from a

flowchart-style model diagram
• To solve an ODE model, we need to provide initial conditions

for the state variables, parameter values, and times over
which to solve the model
• We have learned how to use deSolve to solve ODEs in R
• Next session: Advanced use of deSolve.

39

Ordinary Differential
Equations, session 2

Modern Techniques in Modelling

Outline for session 2

• Recap on ODEs
• How does numerical integration work?
• Advanced use of deSolve
• Practical: time-varying parameters, events, and Rcpp

41

Ordinary differential equations: Recap

42

recovery
S I R

A full ODE model specification has the following elements:

𝛽 ⁄𝐼 𝑁 𝛾

infection

⁄𝑑𝑆 𝑑𝑡
⁄𝑑𝐼 𝑑𝑡
⁄𝑑𝑅 𝑑𝑡

=
=
=

− ⁄𝛽𝐼 𝑁 𝑆
⁄𝛽𝐼 𝑁 𝑆 −	𝛾𝐼

𝛾𝐼

𝑁 = 𝑆 + 𝐼 + 𝑅

𝑆 0 = 9,999
 𝐼 0 	= 1
 𝑅 0 = 0

System of ordinary differential equations

Initial conditions

Parameters
 𝛽 = 0.8
 𝛾 = 0.4

𝑡 ∈ {0, 1, 2, … , 60}
Times to solve system for

Starting from the initial conditions, we use numerical integration
(e.g. with deSolve) to evaluate the variables at times t.

How does numerical
integration of ODEs work?

Numerical integration

Systems of ODEs define curves which usually don’t have analytical solutions.

We use numerical integration to approximate these curves.

Usually done using piecewise polynomials.

Recall – examples of polynomials
 linear y = ax + b
 quadratic y = ax2 + bx + c
 cubic y = ax3 + bx2 + cx + d

Simplest example: piecewise linear approximation (Euler’s method)

44

Euler’s method

Choose a time step, ∆t.

1. Start at initial point y(0), i.e. t = 0.
2. Use ODEs to get “slope” of function

at this point (dy / dt).
3. Move forward to t’ = t + ∆t along a

straight line with this “slope”.
4. Repeat steps 2 - 3.

45

∆t

Euler’s method

Choose a time step, ∆t.

1. Start at initial point y(0), i.e. t = 0.
2. Use ODEs to get “slope” of function

at this point (dy / dt).
3. Move forward to t’ = t + ∆t along a

straight line with this “slope”.
4. Repeat steps 2 - 3.

46

∆t

Euler’s method

Choose a time step, ∆t.

1. Start at initial point y(0), i.e. t = 0.
2. Use ODEs to get “slope” of function

at this point (dy / dt).
3. Move forward to t’ = t + ∆t along a

straight line with this “slope”.
4. Repeat steps 2 - 3.

Note: This is very much like pretending
your ODEs are difference equations! 47

Quadratic method

Instead of a piecewise linear function,
we can use a piecewise quadratic
function.

48

Quadratic method

Instead of a piecewise linear function,
we can use a piecewise quadratic
function.

Note that for piece 1, we have a slope
measurement on the left side and a
slope measurement on the right side.

49

Quadratic method

Instead of a piecewise linear function,
we can use a piecewise quadratic
function.

Note that for piece 1, we have a slope
measurement on the left side and a
slope measurement on the right side.

We can use these two
slopes to construct
a quadratic
piece

 instead of a linear piece.

50

Quadratic method

51

Instead of a piecewise linear function,
we can use a piecewise quadratic
function.

Note that for piece 1, we have a slope
measurement on the left side and a
slope measurement on the right side.

We can use these two
slopes to construct
a quadratic
piece

 instead of a linear piece.

And so on…

Quadratic method

52

Instead of a piecewise linear function,
we can use a piecewise quadratic
function.

Note that for piece 1, we have a slope
measurement on the left side and a
slope measurement on the right side.

We can use these two
slopes to construct
a quadratic
piece

 instead of a linear piece.

And so on…

Approximation methods compared

53

In general, the higher degree polynomials we use, the better our
approximation, at a cost of increased computation.

Example: SIR model, I compartment, ∆t = 10

Approximation methods compared

54

In general, the higher degree polynomials we use, the better our
approximation, at a cost of increased computation.

Example: SIR model, I compartment, ∆t = 10

Approximation methods compared

55

In general, the higher degree polynomials we use, the better our
approximation, at a cost of increased computation.

Example: SIR model, I compartment, ∆t = 10

Approximation methods compared

56

In general, the higher degree polynomials we use, the better our
approximation, at a cost of increased computation.

Example: SIR model, I compartment, ∆t = 10

Approximation methods compared

57

In general, the higher degree polynomials we use, the better our
approximation, at a cost of increased computation.

Example: SIR model, I compartment, ∆t = 4

Approximation methods compared

58

In general, the higher degree polynomials we use, the better our
approximation, at a cost of increased computation.

Example: SIR model, I compartment, ∆t = 4

Approximation methods compared

59

In general, the higher degree polynomials we use, the better our
approximation, at a cost of increased computation.

Example: SIR model, I compartment, ∆t = 4

Approximation methods compared

60

In general, the higher degree polynomials we use, the better our
approximation, at a cost of increased computation.

Example: SIR model, I compartment, ∆t = 4

Approximation methods compared

61

In general, the higher degree polynomials we use, the better our
approximation, at a cost of increased computation.

Example: SIR model, I compartment, ∆t = 1

Usage in deSolve

In deSolve, we can specify what approximation method we want to use
with the method argument to ode():

Solve equations
output_raw <- ode(y = y, times = times,
 func = SI_model, parms = parms)

62

Usage in deSolve

In deSolve, we can specify what approximation method we want to use
with the method argument to ode():

Solve equations
output_raw <- ode(y = y, times = times,
 func = SI_model, parms = parms,
 method = "euler")

63

Usage in deSolve

Solve equations
output_raw <- ode(y = y, times = times,
 func = SI_model, parms = parms,

 method = "euler")

Some common methods:
 "euler" Euler’s method Don’t use this!
 "rk4" 4th-order Runge-Kutta Commonly used, quite good
 "lsoda" Petzold & Hindmarsh Robust (and the default);
 automatic step size

64
Leonhard Euler Carl Runge Wilhelm Kutta Linda Petzold Alan Hindmarsh

Advanced use of deSolve

65

Advanced use of deSolve package

Time-dependent changes to parameters
Events, with or without a “trigger”
Speeding up your model with Rcpp

66

Time dependent parameters

Parameters, like the transmission rate, are “inputs” into the model.

We have been treating these as constants, but they can also vary
with time.

What are some reasons
the transmission rate
might vary over time?

Seasonality…

67

Time dependent parameters

Parameters, like the transmission rate, are “inputs” into the model.

We have been treating these as constants, but they can also vary
with time.

What are some reasons
the transmission rate
might vary over time?

Control measures…

68

Time dependent parameters

Parameters, like the transmission rate, are “inputs” into the model.

We have been treating these as constants, but they can also vary
with time.

What are some reasons
the transmission rate
might vary over time?

Behaviour change…

69

Events

With ODEs, changes that happen to state variables are
fundamentally “smooth” – there are no sudden jumps.

70

Events

With ODEs, changes that happen to state variables are
fundamentally “smooth” – there are no sudden jumps.

What if we need to change the state variables at an instant?

e.g. a new strain of the virus gets
introduced on November 20…

71

Time dependent parameters

SI_model <- function(t, state, parms) {
 # Get variables
 S <- state["S"]
 I <- state["I"]
 N <- S + I
 # Get parameters
 beta <- parms["beta"]
 # Define differential equations
 dS <- -(beta * S * I) / N
 dI <- (beta * S * I) / N
 res <- list(c(dS, dI))
 return(res)
}

72

Time-dependent parameters can be brought directly into the ODE
function.

Time dependent parameters

SI_seasonal_model <- function(t, state, parms) {
 # Get variables
 S <- state["S"]
 I <- state["I"]
 N <- S + I
 # Get parameters
 beta_max <- parms["beta_max"]
 period <- parms["period"]
 beta <- beta_max / 2 * (1 + sin(2*pi*t / period))
 # Define differential equations
 dS <- -(beta * S * I) / N
 dI <- (beta * S * I) / N
 res <- list(c(dS, dI))
 return(res)
}

73

Time-dependent parameters can be brought directly into the ODE
function.

Using ‘events’ in deSolve

–deSolve has the capability to include ‘events’
– This can be used when you want to change the value of a

state variable based on some condition
– Events can be specified as a data.frame, or in a function.
– Events can also be triggered by a root function.
• use a data.frame to specify times at which events occur
• use root function to trigger an event based on some condition

74

Using ‘events’ in deSolve

– Let’s look at an example of using a root function
–We want to predict infection in a livestock population
• managed births, i.e. birth rate is a function of some target farm size 𝐾
• assume that death occurs at longer time scale than infection, so we

don’t include it

d𝑆
d𝑡

= 𝑏𝑁(𝐾 − 𝑁)/𝐾 − 𝛽𝑆𝐼/𝑁

d𝐼
d𝑡

= 𝛽𝑆𝐼/𝑁

where 𝑁 = 𝑆 + 𝐼.
75

Using ‘events’ in deSolve

We have our model function,

SI_open_model <- function(times, state, parms){
Define variables
S <- state["S"]
I <- state["I"]
N <- S + I
Extract parameters
beta <- parms["beta"]
K <- parms["K"]
b <- parms["b"]
Define differential equations
dS <- b * N * (K - N) / K - (beta * S * I) / N
dI <- (beta * S * I) / N
res <- list(c(dS, dI))
return(res)

}
76

Using ‘events’ in deSolve

– Our event is going to be a herd cull, removing a fraction 𝜏.

– Firstly, we need to write a function which changes the appropriate
state variables

event_I_cull <- function(times, state, parms) {
 ## Define variables
 I <- state["I"]
 # Extract parameters
 tau <- parms["tau"]

 I <- I * (1 - tau) # cull the infected population

 state["I"] <- I

 return(state)
}

77

Using ‘events’ in deSolve

– Secondly, we need to write a function which triggers the event

root <- function(times, state, parms){
Define variables
S <- state["S"]
I <- state["I"]
N <- S + I
Extract parameters
K <- parms["K"]

Our condition is if more than half of the
 # target herd size becomes infected; we want
 # our indicator to cross zero when this happens
indicator <- I - K * 0.5)
return(indicator)

}

78

Using ‘events’ in deSolve

output_raw <- ode(y = state, times = times, func =
SI_open_model, parms = parameters, method = "lsoda",
events = list(func = event_I_cull, root = TRUE),

rootfun = root)

What does the output look like?

79

Using Rcpp

–Rcpp is an R package that provides an interface between R
and C++
– The func input in ode can be written in C++
–Overcomes some of R’s speed issues

80

Using Rcpp

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
List SIR_cpp_model(NumericVector t, NumericVector state,
 NumericVector parms)
{

// Get variables
double S = state["S"];
double I = state["I"];
double R = state["R"];
double N = S + I + R;

// Get parameters
double beta = parms["beta"];
double gamma = parms["gamma"];

// Define differential equations
double dS = -(beta * S * I) / N;
double dI = (beta * S * I) / N - gamma * I;
double dR = gamma * I;

NumericVector res_vec = NumericVector::create(dS, dI, dR);

List res = List::create(res_vec);

return(res);
}

81

Practical part 2

Practical part 2

–Objective: implement SIR with time dependent transmission
and use the events function in deSolve
–Answer parts I, II
–Part III is optional

83

