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Introduction



What we will introduce in this session

– Local (or one/multi-way) Analysis
• Uncertainty analysis
• Sensitivity analysis

– Global Analysis
• Probabilistic (or Sampling) uncertainty analysis



Uncertainty and Sensitivity

Uncertainty and Sensitivity are often used interchangably (rather 
confusingly!)

– I will used the terminology used in references below:
• uncertainty analysis is the evaluation of the uncertainty in model output 

caused by uncertainty in the model parameter input (most of what we do)
• sensitivity analysis is the attribution of this uncertainty to each parameter 

(either qualitatively or quantitatively) 

References recommended:
• ‘Global Sensitivity Analysis: The Primer’ by Saltelli et al. (2008)
• Marino et al. (2008) Journal of Theoretical Biology 254
• Blower & Dowlatabadi (1994) International Statistical Review 62



Local (one/multi-way) uncertainty analysis

We can change the value 
of one parameter (or 
composite parameter) and 
evaluate the change in one 
or more model outputs

e.g. how does 𝑅! change 
the prevalence at day 30



Local (one/multi-way) uncertainty analysis

Instead of changing a 
parameter across a set of 
values, we can change the 
model structure

This is often described as 
structural uncertainty 
analysis



Local (one/multi-way) uncertainty analysis

Evaluating one-way sensitivity analysis is convenient when we want to 
understand how changes in our assumptions influence model 
outcomes.

One-way uncertainty analysis is also a good approach if one has 
discrete information about the value of a parameter or about model 
structure 

e.g. (1) a study in Thailand suggests the 𝑅! of Measles is 13, whereas a study in 
Cambodia suggests is it 18 
(2) Does it matter whether our model includes age-dependent 
susceptibility to infection?

But if there is continuous uncertainty in the value of our parameters 
(e.g. a clinical trial suggests a range of plausible vaccine efficacy of 76-
87%, we might prefer a continuous approach to capture the 
uncertainty. For this, one can adopt global uncertainty analysis



Global uncertainty analysis: Monte Carlo 
Sampling

For Global Uncertainty analysis we ‘integrate across’ all the continuous 
uncertainty in our parameters to generate a distribution of outcome values

Example: How does uncertainty in the values of 𝛽 and 𝛾 lead to uncertainty 
in values of 𝑅!?

R0 = beta / gamma

(Uniform) uncertainty in 𝛽 ∈ [0.1,0.8] and 𝛾 ∈ [0.1,0.5]



Global uncertainty analysis: Monte Carlo 
Sampling

Uniform uncertainty in beta and gamma to 𝑅!= 1.45 (0.41– 4.43)



Global uncertainty analysis: Monte Carlo 
Sampling

We assumed that both 𝛽 and 𝛾 were distributed uniformly over their 
respective intervals, but we can relax this rule and choose any distribution 
we want



Global uncertainty analysis: Monte Carlo 
Sampling



Global uncertainty analysis: Monte Carlo 
Sampling

– To sample from any ‘closed form’ distribution we can use the R 
functions: runif(...), rnorm(...), rbeta(...) etc. (where the 
‘r’ stands for random number)

# Generate 5 random samples from the
# poisson distribution with rate 2.4
pois.samples <- rpois(5,2.4)
[1] 2 5 4 1 5

– More broadly, if you replace ‘r’ you can get other useful functions 
• dpois(x, ...) generates the density function at 𝑥
• ppois(q, ...) generates the cumulative density function at 𝑞
• qpois(p, ...) generates the inverse cumulative density function at 𝑝



Global uncertainty analysis: Monte Carlo 
Sampling

– Every time you ask R to ‘generate random numbers’, you are actually 
generating pseudorandom numbers from random number 
generators. 

– Random number generators (RNGs) are algorithms that produce 
numbers that look stochastic (random), but are deterministic. 

e.g. > runif(1)
[1] 0.9734249
> runif(1)
[1] 0.2389333

– If they are deterministic algorithms how do they produce different 
output every time? 



Global uncertainty analysis: Monte Carlo 
Sampling

– ….by starting in a different place each time. 
– To generate a sequence of pseudorandom numbers that are always 

different, the place (or, ‘seed’), where the algorithm starts must 
always be different. 

– This is often achieved by using the current time as the seed. 
– R will do this automatically for you, but you can set it manually:
• E.g. > set.seed(Sys.time()) # use computer’s time to 
set the seed of the RNG 

– If you want to create the same sequence of numbers, you can use a 
fixed seed (if you are wanting to debug your code!)
• E.g.  > my.seed <- 42

> set.seed(my.seed)
> runif(1)

> [1] 0.914806
> set.seed(my.seed)

> [1] 0.914806



Global uncertainty analysis: Monte Carlo 
Sampling

Monte Carlo Sampling generates random numbers from an entire 
distribution. It works because we sample from a parameter 
distribution (parameter input) that we know to generate samples from 
the outcome distribution that we don’t know. 

However, it can be computationally expensive because the parameter 
samples are picked from across the entire distribution. If we don’t pick 
enough samples, the parameter values we assemble might not be a 
good representation of the distribution



Global uncertainty analysis: Monte Carlo 
Sampling

10 samples 100 samples 100 samples



Global uncertainty analysis: Latin Hypercube 
Sampling

LHS is a specific type of Monte Carlo sampling

The idea is to split up the distribution into as 
many chunks (with equal probability density) as 
you want samples and randomly pick a value 
from each chunk

– This should give you a better representation 
of the entire distribution and therefore it is 
more efficient

– Good to use if you are sampling over many 
parameters at the same time

– A minimum number of samples of 4𝐾/3, 
where 𝐾 is the number of parameters

Marino et al JTB 254(2008)178-196



Global uncertainty analysis: Latin Hypercube 
Sampling

The package ‘lhs’ has pre-written functions:

# LHS for a uniform distribution [0,1] for each 
parameter
myLHSsamples <- lhs::randomLHS(number.of.samples,

number.of.parameters)

If you need to sample from other distributions, with a closed form
𝑢 ∼ 𝒰(0,1) can be transformed to other distributions using sampling by 
inversion. 



Global uncertainty analysis: Sampling by 
inversion

Example: 
Generate samples 
X1 ,…, Xn
from an Exponential 
Distribution with rate 
parameter = 1/5

1. Sample from U(0,1): 
R1 ,…, Rn

2. Calculate a sample 
from Exp(1/5) using 
its inverse function 
F-1(y) = -log(1-y)

3. Xi = -log(1-Ri)

Ri

Xi



Local (one/multi-way) sensitivity analysis: 
measures

– The SENSITIVITY (s) of a model with respect to a parameter is:
• The increase or decrease in outcome unit per increase in parameter unit
• i.e. parameter increase of 0.01 leads to an additive change in the outcome by 

0.01s 

– The ELASTICITY (e) of a model with respect to a parameter is:
• The proportional change in the outcome when a parameter is increased
• i.e. increasing a parameter by a factor of 1.01 would lead to the scaling of an 

outcome measure 1.01e

Both measures indicate how much each parameter influences the 
outcome measure. 

For more information on Global sensitivity analyses, please consult 
Saltelli 2008.



If you use Monte Carlo sampling, you will generate a distribution of 
outcomes (e.g. epidemic curves), because you are capturing parameter 
uncertainty. 

However, this sampling does not necessarily mean the underlying 
model is stochastic (i.e .that it incorporates randomness). 

That is, for a fixed parameter draw in your Monte Carlo samples, each 
model run can be either deterministic (the types of models we have seen 
so far in the course) or stochastic (there is randomness – we’ll see 
examples of these tomorrow).

Monte carlo sampling vs stochasticity



Over to you

– Open up Practical_06.R


