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Introduction



Previously

– We have explored discrete time-step compartmental models, and 
continuous ODE-based compartmental models, both of which are 
deterministic and track groups of individuals.

– Now we’ll be exploring another kind of model, stochastic individual-
based models (also called: agent-based models, microsimulations).

– To understand this type of model, we’ll discuss what individual-
based means and what stochastic means in this context.



Stochastic individual-basedmodels

Individual-based logic:
– Different kind of logic to a compartmental model.
– Instead of thinking about and tracking groups of individuals:
• There are 634 infected individuals and 366 uninfected individuals.
• What happens next to each group?

– We are thinking about and tracking individuals:
• Individual 1 is infected.
• Individual 2 is not infected.
• Individual 3 is infected.
• …
• What happens next to each individual?



Stochastic individual-based models

Probabilistic rules:
– Models are specified in terms of probabilistic “rules” for each individual.
– Usually, these rules are evaluated in discrete time steps ∆t, often 1 day.
– For example, for an SIS model (Susceptible-Infectious-Susceptible), each 

individual might follow these rules once each day:

If susceptible, 
then with probability X become infectious

If infectious,
 then with probability Y become susceptible

– Typically, X would be higher or lower depending on the force of infection, 
and Y would be chosen to reflect the duration of infectiousness (we’ll see 
more on the next few slides).

– Later we’ll discuss more complex kinds of rules.

How do we choose
these probabilities?



Turning event rates into probabilities

In an ODE model, a state transition is an event that happens at a certain rate.

⁄𝑑𝑆 𝑑𝑡 = −𝜆𝑆 + 𝛾𝐼
⁄𝑑𝐼 𝑑𝑡 = 𝜆𝑆 − 𝛾𝐼

𝜆 = 𝛽
𝐼
𝑁

Above, the S -> I transition happens at rate 𝜆 = 𝛽 !
"

 for each S individual, and 
the I -> S transition happens at rate 𝛾 for each I individual. 

Both 𝜆 and 𝛾 are “per-capita” rates, in units of “events per unit time, per 
person” (events · unit time–1 · person–1). The overall rate of “events per unit 
time” is obtained by multiplying these by S and I respectively.



Turning event rates into probabilities

Suppose we wanted to set up our stochastic individual-based model in the 
same way, with an S -> I transition at rate 𝜆 and an I -> S transition at rate 𝛾. 

– For an SIS model (Susceptible-Infectious-Susceptible), each individual 
might follow these rules once each day:

If susceptible, 
then with probability X become infectious

If infectious,
 then with probability Y become susceptible

How do we turn a rate (e.g. 𝜆) into a probability (e.g. X) that, during a given 
time step, a given individual experiences the event?



Turning event rates into probabilities

– If some event happens at per-individual rate 𝜆, the probability of it 
happening at least once to a given individual in a given time step of 
duration Δ𝑡 is

𝑃 ≥ 1	events = 1 − 𝑒!"#$

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0
 λ∆t

𝑃
≥
1	
ev
en
ts



Turning event rates into probabilities

We might think: 
 probability = rate × ∆t

e.g.
 rate = 0.1 events/day
 ∆t = 1 day
 probability = 0.1 × 1 = 0.1

However, this starts to break down 
for higher rates:

e.g.
 rate = 1.2 events/day
 ∆t = 1 day
 probability = 1.2 × 1 = 1.2???

Problems:
• Not clear what to do with this probability that is > 1.
• Even when an event happens, on average, once per day, there can be days 

where the event doesn’t happen at all and days when it happens multiple 
times. We want to preserve this property of random events.



Turning event rates into probabilities

Consider a length of time, which is divided into time steps ∆t, “scattered” 
randomly with events.

          ∆t

Some time steps have 0 events, some have 1, some have >1. How do we 
account for this mathematically?

The difficulty here is that some time steps contain >1 events. So let’s take our 
time step and break it down even further into pieces that are so small, it’s safe 
to assume that no more than one event can happen in each tiny piece.
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Turning event rates into probabilities

∆t/nn pieces

…

There are 𝑛 pieces, each of length Δ𝑡/𝑛.
The probability of the event, whose rate is 𝜆, occurring during any given time-
step piece is 𝜆	×	Δ𝑡/𝑛.

Now we can calculate the probability that 0, 1, 2, 3, … events happen in Δ𝑡.

𝑃 0	events = 1 − 𝜆 ⁄Δ𝑡 𝑛 #

lim
#→%

1 − 𝜆 ⁄Δ𝑡 𝑛 # = 𝑒&'()

𝑃 0	events = 𝑒&'() 	; 	 𝑃 ≥ 1	events = 1 − 𝑒&'()
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An example stochastic individual-based model

Let’s say we have 𝑁 individuals who can be either susceptible or infected.
The force of infection is 𝜆 = 𝛽𝐼/𝑁 and the recovery rate is 𝛾.
We loop over time steps 1 to 𝑇 and our time step size is 𝛥𝑡.

For each ts from 1 to T {

  lambda <- beta * I/N

  For each i from 1 to N {

    If individual i is susceptible:

      with prob 1-exp(-lambda·∆t) make infected.

    Else-if individual i is infected:

      with prob 1-exp(-gamma·∆t) make susceptible.
  }

  Record population state

}



An example stochastic individual-based model

Pseudocode

Initialize state

For each ts from 1 to T {
  lambda <- beta * I/N

  For each i from 1 to N {

    If individual i is susceptible:

      with prob 1-exp(-lambda·∆t),
        make infected.

    Else-if individual i is infected:
      with prob 1-exp(-gamma·∆t),

        make susceptible.

  }

  

  
  Record population state

}

R code

state <- rep("S", n)

state[1:10] <- "I"

for (ts in 1:steps) {
  lambda <- beta * sum(state == "I") / n

  for (i in 1:n) {

    if (state[i] == "S") {

      if (runif(1) < 1 - exp(-lambda * dt)) {
        state[i] <- "I"
      }

    } else if (state[i] == "I") {
      if (runif(1) < 1 - exp(-gamma * dt)) {

        state[i] <- "S"

      }
    }
  }

  # Record population state . . .

}



Outline of the practical

1. An individual-based SEIR model of SARS-CoV-2 transmission.
2. Adding more complex dynamics to the SEIR model.
3. Optimizing the model to run faster.



Practical 1. An individual-based SEIR 
model of SARS-CoV-2 transmission



Practical 1: Individual-based SEIR model

In the first practical, you will be implementing an SEIR model with waning 
immunity as a stochastic individual-based model.

S E I R
𝛽 ⁄𝐼 𝑁 𝛿 𝛾

𝜔



Practical 1: Individual-based SEIR model
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Advantages of individual-based models

– Each individual can have properties (age, sex, physical location, 
network of contacts…) that do not need to be “grouped” as in a 
compartmental model, and which can change in precisely specified 
ways over time.

– Can be easier to think about.

– Can allow for more complex dynamics.

– Because rules are probabilistic, allows consideration of stochastic 
effects.



Disadvantages of individual-based models

– Usually hard to “prove” results. (i.e. not analytically tractable)

– Can be more complex to implement than compartmental models.

– Slower to run than compartmental models, especially in R, especially 
if not coded carefully.

– Stochastic effects introduce complications:
• Results may depend upon population size, time step size
• You have to average over multiple “runs” to have confidence in results



Practical 2. Adding more complex 
dynamics to the model



More complex dynamics

Up until now, in our model we have only kept track of one “piece of 
information” for each individual, their state (S, E, I, or R).

In an individual-based model, we can track as many different properties 
for each individual as we can think of – such as their age, viral load, 
antibody level, geographical location, household, etc…

These properties are not limited to discrete states (such as S/E/I/R, 
old/young, etc) but can be values such as real numbers (1.234) or 
character strings (AGTAGCTAGGC…)

We will now explore a few such examples.



Example 1. Age

We can give each individual an age (in years) in addition to their state:

state <- rep("S", n)

state[1:10] <- "E"

age <- runif(n, 0, 80)

Using this, we can make other properties of the simulation depend upon a 
person’s age, such as making infectiousness depend on age:

# before
lambda <- beta * sum(state == "I") / n

# after

lambda <- beta * sum(infectiousness(state, age)) / n

infectiousness <- function(state, age) {

    ifelse(state == "I", 1.25 – age/160, 0)

}



Example 1. Age

We can also simulate aging in the model:

for (i in 1:n) {

    age[i] <- age[i] + dt / 365

    # . . .
}

But this may not make a difference if we are only simulating short 
outbreaks.



Example 2. Arbitrary delays

In previous practicals, individuals had a constant rate of transitioning out 
of, for example, the latent period (the “Exposed” state).

 ⁄𝑑𝐸 𝑑𝑡 = ⁄𝛽𝐼 𝑁 𝑆	 − 𝛿𝐸
 ⁄𝑑𝐼 𝑑𝑡 = 𝛿𝐸 − 𝛾𝐼

if (state[i] == "E") {

    if (runif(1) < 1 - exp(-delta * dt)) {
        state[i] <- "I"

    }

}



Example 2. Arbitrary delays

When individuals leave a 
compartment at a constant per-capita 
rate, the amount of time each 
individual spends in the compartment 
is exponentially distributed.
(image: Wikipedia)

However, measured durations of latent / incubation / 
infectious period are usually more “clumped” than

an exponential distribution, such as this estimate
of the latent period for the Delta variant.
(Kang et al. 2022, Eurosurveillance 27: 2100815)



Example 2. Arbitrary delays
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Example 2. Arbitrary delays

We can give each individual a “delay” property:

delay <- rep(0, n)

When individual i enters the Exposed state, we can assign a value to 
delay[i] representing how much time they have left:

if (state[i] == "S") {

    # Transition S -> E (infection) at rate lambda

    if (runif(1) < 1 - exp(-lambda * dt)) {
        state[i] <- "E"

        delay[i] <- rlnorm(1, meanlog = 0.5, sdlog = 0.6)

    }

}



Example 2. Arbitrary delays

Each time step, we make sure to subtract dt from each individual’s time 
remaining:

delay[i] <- delay[i] - dt

Finally, we make the transition E -> I dependent upon this delay instead of 
the old rate 𝛿:

else if (state[i] == "E") {

    # Transition E -> I (latent to infectious)

    if (delay[i] < 0) {

        state[i] <- "I"
    }

}



Practical 2. More complex dynamics

The instructions online will guide you through adding: 
• delay distributions for the latent and infectious period, 
• age and age-dependent infectiousness, 
• immunity based upon antibody levels and 
• vaccination 
to the model from Practical 1.



Practical 2. More complex dynamics
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Practical 2. More complex dynamics

0

1000

2000

3000

4000

5000

0 500 1000 1500
ts

S
colour

E

I

S

−10

0

10

20

30

0 500 1000 1500
Time step

M
ea

n 
an

tib
od

y 
le

ve
l

colour
Unvaccinated

Vaccinated



Practical 3. Optimizing the model 
to run faster



Practical 3. Optimizing the model

– In R, code that loops over each individual in an individual-based 
model can be quite slow to run.

– This code can be optimized significantly by vectorizing it—that is, by 
applying events all at once rather than to each individual in turn.



Vectorizing R code

Compare this code:

for (i in 1:n) {

  if (state[i] == "S") {
if (runif(1) < 1 - exp(-lambda * dt)) {

state[i] <- "E"
}

  }
}

With this code:

trE <- (state == "S") & (runif(n) < 1 - exp(-lambda * dt))
state[trE] <- "E"



Summary

– Stochastic individual-based models track individual members of a 
population and assume that events happen probabilistically, which 
means that they incorporate random chance.

– Individual-based models allow you to do things that compartmental 
models don’t. 
• But they are more complex to implement and slower to run, so only use 

them if you need that added complexity.
• Stochasticity also means we will need to run the model multiple times to get 

a good summary of what the model is doing.

– The run time of an individual-based model in R can be improved by 
“vectorizing” the code (but an individual-based model will usually 
still be slower than a deterministic, ODE model equivalent, if one 
exists).


