Network Modelling

Modern Techniques in Modelling

Overview

Discuss network modelling concepts (~20 min)

Practical 1: Introduction to the igraph package (~40 min)

BREAK (~30 min)

Reed-Frost SIR Model (~10 min)

Practical 2: A network model of mpox transmission (~40 min)

Closing discussion (~10 min)

Part 1:

What are Network Models? Why Use Networks?

What are Network Models?

Network = set of vertices **V** and edges **E**

What are Network Models?

Network = set of vertices \boldsymbol{V} and edges \boldsymbol{E} an edge e_{ij} in \boldsymbol{E} connects two vertices v_i , v_j in \boldsymbol{V}

What are Network *Models*?

Modelling: representing real phenomena by abstractions

How might networks represent infectious disease?

Some possible answers:

Generally: represent process over the *network* (e.g., transmission) + vertex *state* (e.g., SIR)

Useful to think about contacts:

- when transmission depends on specific contacts (e.g., STIs)
- if there is heterogeneity / structure to contacts (e.g., influenza in schools vs workplaces vs households)

Spatial relationships:

- mosquitoes moving between adjacent households
- people migrating from one region to another

Why use networks?

Shared features of those examples:

- "realism" aspect of the model (e.g. vs homogeneous mixing)
- clear translation between observations and model
- generalisation: e.g., why does R_0 vary between contexts? same pathogen & host but different transmission networks

Practical 1

Introduction to the igraph package

1. Run the plot(gr) line multiple times. The plot changes. Does the graph change?


```
V(network)[12]$color <- "orange"
V(network)[color == "orange"]$color <- "pink"</pre>
```

2. What do the above lines do?

While the first line selects a specific vertex (#12), the second line selects all vertices that have color == "orange" — this will be useful when we use vertex properties to represent states (e.g. S, I, R).


```
V(network)[.nei(color == "pink")]$color <- "pink"
plot(network)</pre>
```

3. What is the code above doing? What happens if you re-run the two lines above several times?

V(network)[.nei(color == "pink")]\$color <- "pink"
plot(network)</pre>

3. What is the code above doing? What happens if you re-run the two lines above several times?

What relevance might selecting neighbours of vertices have for modelling infectious disease transmission?

Coffee break

Part 2:

A network SIR model for mpox transmission

In this hour....

- Describe the "Reed-Frost" model
- 2. Describe how this model can be implemented on a network
- 3. Practical: Model mpox transmission on a sexual network

The Reed-Frost model

Population, N, of hosts

"Time" in steps (generations): t, t+1, ...

Hosts either Susceptible, Infectious, or Removed

When *I* and *S* interact at *t*, probability *p* that the *S* becomes *I* at *t+1* (i.e., stochastic infection)

All I hosts at a time step t become R at t+1

This can be implemented on a network...

Population, N, of hosts

"Time" in steps: *t*, *t*+1, ...

Hosts either **Susceptible**, **Infectious**, or **Removed**

Each time step, *all* neighbours interact

When I and S interact at t, probability p that the S becomes I at t+1

All I hosts at a time step t become R at t+1

Population, N, of hosts

"Time" in steps: *t*, *t*+1, ...

Hosts either **Susceptible**, **Infectious**, or **Removed**

Each time step, *all* neighbours interact

When I and S interact at t, probability p that the S becomes I at t+1

All I hosts at a time step t become R at t+1

Population, N, of hosts

"Time" in steps: *t*, *t*+1, ...

Hosts either **Susceptible**, **Infectious**, or **Removed**

Each time step, *all neighbours* interact

When I and S interact at t, probability p that the S becomes I at t+1

All I hosts at a time step t become R at t+1

Mpox

Monkeypox virus, which causes mpox, spreads by close contact

Flu-like symptoms give way to rash especially on hands and feet, anogenital region, throat, trunk

Clade I and Clade II differ in transmission characteristics and severity

The median incubation period for the 2022 Clade IIb outbreak was 9 days (IQR: 5–13 days; McFarland et al., Euro Surveill.¹)

Transmission of Clade II has often been primarily among sexual networks of GBMSM due to close contact

¹ https://doi.org/10.2807/1560-7917.ES.2023.28.27.2200806

Practical 2

A network model of mpox transmission

1. Try varying the d parameter for create_network() between 0 and 2. What changes about the network?

2. Plot using plot_degree() for 500 nodes...


```
net <- create_network(500, 1)
net <- network_step(net, p = 0.8)
plot_state(net)</pre>
```

3. After creating your network with the first line above, run the last two lines repeatedly to watch the network model evolve.


```
net <- create_network(500, 1)
net <- network_step(net, p = 0.8)
plot_state(net)</pre>
```

3. After creating your network with the first line above, run the last two lines repeatedly to watch the network model evolve.

4. How does the preferential attachment parameter (create_network parameter d) affect the final outbreak size?

Summary of 100 runs

d	Final outbreak size Median (90% CI)
0.0	207 (84–308)
1.0	261 (131–335)
2.0	397 (379–415)

(Tip: quicker to run if you remove the plotting and pausing statements from run_model.)

Bonus material

Further "bonus" examples in the practical explore introducing vaccination to the model, and explores the impact of targeting vaccination to the least-connected or to the most-connected individuals.

Review

Introduced network modelling concepts

Discussed and implemented Reed-Frost *SIR* as a network model

Demonstrated strengths of network approach

Closing questions?

For early discussion of Reed-Frost Model, see e.g. *An examination of the Reed-Frost theory of epidemics.*Abbey H. Hum Biol. 1952 Sep; 24(3):201-33.