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Overview

Introduce continuous-time stochastic models (~20 minutes)

Implement the Gillespie algorithm and analyse stochastic
model output (~60 minutes)

Implement a stochastic model with the adaptivetau
package (~20 minutes)

Discussion and concluding remarks (~20 minutes)



Deterministic models

SIR model with I, =10, =1.3,7=10.3

Number infectious

time

One set of parameters — one trajectory



Stochastic models

SIR model with I, = 10,3 = 1.3,y = 0.3

Number infectious

time

One set of parameters — many trajectories



Types of model

® discrete vs continuous time
® compartment- vs individual-based

® deterministic vs stochastic dynamics



Session 3: Discrete-time deterministic models

® discrete vs continuous time
® compartment- vs individual-based

® deterministic vs stochastic dynamics

S(t+1)=S5(t) —BS)I(¢)
I(t+1) =1(t) + BSOI(t) — (1)
R(t+1) = R(t) +~I(t)



Session 3: Discrete-time deterministic models

e discrete vs eontinuous time
® compartment- vs individual-based
® deterministic vs stechastie dynamics

S(t+1)=S5(t) —BS)I(¢)
I(t+1) =1(t) + BSOI(t) — (1)
R(t+1) = R(t) +~I(t)



Session 4: Ordinary differential equations

® discrete vs continuous time
® compartment- vs individual-based

® deterministic vs stochastic dynamics

dS/dt = —BSI/N
dI/dt = BSI/N —~I
dR/dt = ~I



Session 4: Ordinary differential equations

® diserete vs continuous time
® compartment- vs individual-based
® deterministic vs stechastie dynamics

dS/dt = —BSI/N
dI/dt = BSI/N —~I
dR/dt = ~I



Session 8: Stochastic individual-based models

® discrete vs continuous time
® compartment- vs individual-based
® deterministic vs stochastic dynamics

For each ts from 1 to T {
lambda <- beta * I/N
For each i from 1 to N {
If individual i is susceptible:
with prob l-exp(-lambda- t) make infected.
Else-if individual i is infected:
with prob 1-exp(-gamma- t) make susceptible.
}

Record population state



Session 8: Stochastic individual-based models
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Continuous-time stochastic models

® diserete vs continuous time
® compartment- vs individual-based

® deterministie vs stochastic dynamics



Stochastic differential equations (SDEs)

® diserete vs continuous time
® compartment- vs individual-based
® deterministie vs stochastic dynamics

dS/dt = —pSI/N —+/BSI/NdW,
dl/dt = BSI/N —~I + \/BST/NAW, — \/yIdW,
dR/dt = ~I + /~IdW,

(not covered in this course)



Continuous-time discrete stochastic models

® diserete vs continuous time
® compartment— vs individual-based
® deterministie vs stochastic dynamics

‘We model these as a so-called continuous-time Markov
chains.



Event-based view




Event-based view

@ Infection= @ Recovery= @

e infection: (S,I,R) — (S — 1,1+ 1, R) with rate 3SI/N
¢ recovery: (S,I,R) — (S,I —1,R + 1) with rate yI



Moving to continuous time

Discrete time

for (ts in 1:steps) {
update all compartments

3

(see Session 8: Stochastic individual-based models)

Continuous time

while (time < finaltime) {
advance time and record next event

3

(this session)



Gillespie algorithm

Repeat until end time:

1. Calculate rates of all possible events

rates <- c(
infection = beta * S *x I / N,
recovery = gamma * I

)

2. Determine time of next event

rexp(n = 1, rate = sum(rates))

3. Determine which event happens

sample(x = length(rates), size = 1, prob = rates)

and update system state according to event.



Now, put it in R
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Practical structure

® Part 1: Stochastic simulations using the Gillespie algorithm
® Part 2: A faster alternative: the adaptivetau package



Representing
uncertainty

LONDON
SCHOOLof
HYGIENE
&TROPICAL
MEDICINE

2




The deterministic view




The stochastic view

rod
P[:IY. l#)



Other types of uncertainty

rof
P(:lyo l#)



Linking models to data

Posit
plx 1% ®)

See LSHTM short course on Model Fitting and Inference for
Infectious Disease Dynamics.


https://www.lshtm.ac.uk/study/courses/short-courses/infectious-diseases-dynamics
https://www.lshtm.ac.uk/study/courses/short-courses/infectious-diseases-dynamics
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