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Introduction



Overview

• Introduce continuous-time stochastic models (~20 minutes)
• Implement the Gillespie algorithm and analyse stochastic

model output (~60 minutes)
• Implement a stochastic model with the adaptivetau

package (~20 minutes)
• Discussion and concluding remarks (~20 minutes)



Deterministic models

SIR model with 𝐼0 = 10, 𝛽 = 1.3, 𝛾 = 0.3
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One set of parameters → one trajectory



Stochastic models

SIR model with 𝐼0 = 10, 𝛽 = 1.3, 𝛾 = 0.3
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One set of parameters → many trajectories



Types of model

• discrete vs continuous time
• compartment- vs individual-based
• deterministic vs stochastic dynamics



Session 3: Discrete-time deterministic models

• discrete vs continuous time
• compartment- vs individual-based
• deterministic vs stochastic dynamics

𝑆(𝑡 + 1) = 𝑆(𝑡) − 𝛽𝑆(𝑡)𝐼(𝑡)
𝐼(𝑡 + 1) = 𝐼(𝑡) + 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡)
𝑅(𝑡 + 1) = 𝑅(𝑡) + 𝛾𝐼(𝑡)



Session 3: Discrete-time deterministic models

• discrete vs continuous time
• compartment- vs individual-based
• deterministic vs stochastic dynamics

𝑆(𝑡 + 1) = 𝑆(𝑡) − 𝛽𝑆(𝑡)𝐼(𝑡)
𝐼(𝑡 + 1) = 𝐼(𝑡) + 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡)
𝑅(𝑡 + 1) = 𝑅(𝑡) + 𝛾𝐼(𝑡)



Session 4: Ordinary differential equations

• discrete vs continuous time
• compartment- vs individual-based
• deterministic vs stochastic dynamics

𝑑𝑆/𝑑𝑡 = −𝛽𝑆𝐼/𝑁
𝑑𝐼/𝑑𝑡 = 𝛽𝑆𝐼/𝑁 − 𝛾𝐼
𝑑𝑅/𝑑𝑡 = 𝛾𝐼



Session 4: Ordinary differential equations

• discrete vs continuous time
• compartment- vs individual-based
• deterministic vs stochastic dynamics

𝑑𝑆/𝑑𝑡 = −𝛽𝑆𝐼/𝑁
𝑑𝐼/𝑑𝑡 = 𝛽𝑆𝐼/𝑁 − 𝛾𝐼
𝑑𝑅/𝑑𝑡 = 𝛾𝐼



Session 8: Stochastic individual-based models

• discrete vs continuous time
• compartment- vs individual-based
• deterministic vs stochastic dynamics

For each ts from 1 to T {
lambda <- beta * I/N
For each i from 1 to N {

If individual i is susceptible:
with prob 1-exp(-lambda·�t) make infected.

Else-if individual i is infected:
with prob 1-exp(-gamma·�t) make susceptible.

}
Record population state

}



Session 8: Stochastic individual-based models

• discrete vs continuous time
• compartment- vs individual-based
• deterministic vs stochastic dynamics

For each ts from 1 to T {
lambda <- beta * I/N
For each i from 1 to N {

If individual i is susceptible:
with prob 1-exp(-lambda·�t) make infected.

Else-if individual i is infected:
with prob 1-exp(-gamma·�t) make susceptible.

}
Record population state

}



Continuous-time
stochastic models



Continuous-time stochastic models

• discrete vs continuous time
• compartment- vs individual-based
• deterministic vs stochastic dynamics



Stochastic differential equations (SDEs)

• discrete vs continuous time
• compartment- vs individual-based
• deterministic vs stochastic dynamics

𝑑𝑆/𝑑𝑡 = −𝛽𝑆𝐼/𝑁 − √𝛽𝑆𝐼/𝑁𝑑𝑊1

𝑑𝐼/𝑑𝑡 = 𝛽𝑆𝐼/𝑁 − 𝛾𝐼 + √𝛽𝑆𝐼/𝑁𝑑𝑊1 − √𝛾𝐼𝑑𝑊2

𝑑𝑅/𝑑𝑡 = 𝛾𝐼 + √𝛾𝐼𝑑𝑊2

(not covered in this course)



Continuous-time discrete stochastic models

• discrete vs continuous time
• compartment- vs individual-based
• deterministic vs stochastic dynamics

We model these as a so-called continuous-time Markov
chains.



Event-based view
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Event-based view

S I R
Infection Recovery

• infection: (𝑆, 𝐼, 𝑅) → (𝑆 − 1, 𝐼 + 1, 𝑅) with rate 𝛽𝑆𝐼/𝑁
• recovery: (𝑆, 𝐼, 𝑅) → (𝑆, 𝐼 − 1, 𝑅 + 1) with rate 𝛾𝐼



Moving to continuous time

Discrete time

for (ts in 1:steps) {
update all compartments

}
(see Session 8: Stochastic individual-based models)

Continuous time

while (time < finaltime) {
advance time and record next event

}
(this session)



Gillespie algorithm

Repeat until end time:

1. Calculate rates of all possible events
rates <- c(
infection = beta * S * I / N,
recovery = gamma * I

)

2. Determine time of next event
rexp(n = 1, rate = sum(rates))

3. Determine which event happens
sample(x = length(rates), size = 1, prob = rates)

and update system state according to event.



Now, put it in R



Practical structure

• Part 1: Stochastic simulations using the Gillespie algorithm
• Part 2: A faster alternative: the adaptivetau package



Representing
uncertainty



The deterministic view



The stochastic view



Other types of uncertainty



Linking models to data
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See LSHTM short course on Model Fitting and Inference for
Infectious Disease Dynamics.

https://www.lshtm.ac.uk/study/courses/short-courses/infectious-diseases-dynamics
https://www.lshtm.ac.uk/study/courses/short-courses/infectious-diseases-dynamics
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