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What is R?

Programming language
– Free, open source core, maintained and regularly updated
– Statistics and data-focussed
– Add-on packages made by users

ggplot2

ade4

desolve

NHPoisson

data.table

knitr

lubridate

time

faraway

devtools

matrixStats

igraph

network

MASS

stats

lmf

dplyr

reshape2

scales

R core
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Why use R?

Free
Active development
No limit on what you can do:
– Statistics
– Data cleaning/processing
– Interacting with websites
– …
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Overview of session and learning objectives

1. Objects 2. Data files 3. Plotting
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1. Objects 2. Data files 3. Plotting

Execute statements for:
• displaying data on a plot
• personalising your plot e.g. 

colour, axis labels, title

Consider:
• different ways to plot data

Familiarise yourself with:
• RStudio
• working directory

Execute statements for:
• basic R functionality
• built-in R functions
• ask R for help with a 

function

Consider:
• how to search for help 

online

Write code to:
• explore basic R functionality

Execute statements for:
• reading files
• viewing data 
• manipulating data

Consider:
• different ways to access the 

same information 
• how to trouble-shoot file 

read in issues

Write code:
• to correct an issue

Overview of session and learning objectives
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• Open RStudio
• Set your working directory to wherever you saved the folder 

of practicals:
– Session à Set working directory à Choose directory
– Then navigate to the right folder 

Session 1: Set working directory 
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Session 1: RStudio

1. Script 
Window

2. Console 
Window

3. Help and 
Plots

4.Environment
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Script window
Can have multiple R files open in tabs
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#  marks a 
commented line
When sent to 
console, does not 
get run
RStudio shows 
comments in a 
different colour

“Syntax 
highlighting” 
RStudio shows R 
code in different 
colours
according to 
what it is Keep your script tidy:

- Space out sections
- Write useful comments
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Console window

Where R code 
from the script 
window is run

Commands and 
results in same 
window

Ctrl+enter
(Windows)
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Help, Plotting, 
packages
Use different 
tabs depending 
on what you 
need
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Objects in your 
environment, and 
history of 
commands run.
Use different tabs 
depending on what 
you need
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Running lines of code from script window
– Buttons – “Run” at the top of script window
– Shortcut – Ctrl + Enter (Windows); Cmd + Enter (Mac)

Run single lines or multiple lines

Session 1: Running / executing
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Create objects in the workspace, or read them in from files using the 
“assignment operator”: <-
– my.object <- “orange”
– this.object <- c(1, 2, 3)

Then these objects exist in the workspace.
Check for them by looking in the environment tab 
Or running the command: objects()

Session 1: Creating objects
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Objects:
– Single items (atomic)
– Vectors
• Access elements of vectors

Session 1: Creating objects

object1 <- 546.32
object1 <- “orange”

object1 <- c(1.15, 2.33, 3.84)
object1[2]
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Objects:
– Single items (atomic)
– Vectors
• Access elements of 

vectors
– Data frames
• Access elements of data 

frames by row and 
column

Session 1: Creating objects

df1 <- data.frame(col1=c(1,2,3),
col2=c(“cat”, “dog”, “bear”) )

col1 col2
1 “cat”
2 “dog”
3 “bear”

df1[3, 2]

Use this function to 
define a data frame

Set the first column to 
be a vector of 
numbers

Second column 
a vector of 
names

Column 
names

Row Column
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Session 1: Creating objects

• Objects:
• Single items (atomic)
• Vectors
• Access elements of vectors

• Data frames
• Access elements of data frames by row and column

• Matrices
• Similar to data frames 
• (key difference in practical!)
• Access elements of matrices in the same way

• Lists
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Objects are of certain types, called classes:

– Character: “a”, “dog”, “orange”
– Integer: 1, 2, 658, -32
– Numeric: 1.2, 3.141592653, -2.1x10-4

– Logical: TRUE/FALSE
– Date: “2015-07-25”

NAs are missing values and can be of any type

Session 1: Classes of objects
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Operations:
– +, -, *, /

In built statistical functions
– Mean, median, log, etc

Manipulating data sets
– Extracting certain columns
– Subsetting by value
– Replacing values

Session 1: Operations
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Finding help
– From the console:
• “?” if you know the name of the function you’re looking for: ?mean
• “??” to search for something:  ??mean

– In R Studio:
• In the “Help” tab
• Search box on the upper right

– Online:
• Stackoverflow is a question-and-answer website 
• Lots of error messages explained

Session 1. Finding help

19



• Use the R script called `Practical_P01_1.R`
• Work through it, instructions are in comments:
– # this is a comment

• Enter answers, where it says “Answer:” as a comment

• Save these scripts so you can refer to them later

Session 1: Practical
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We’ve:
– Created objects of different types
– Performed operations on those objects
– Extracted elements of data frames and matrices
– Created new objects by subsetting

Session 1: Summary
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Session 2: Data files

Common data file types: .txt .csv (NB: need ‘packages’ to read in .dta .xls
etc.)
Common delimiters: tab (“\t”), space (“ ”), comma (“,”)
Common read in functions: read.table(…), read.csv(…)
Some function options: 

- delimiter e.g. sep=“ ”
- column names e.g. header=TRUE

Example: mydata <- read.table(“mydatafile.txt”, header=FALSE, sep=“\t”)

Outputting data to check examples: 
- All data: mydata
- First few lines of data: head(mydata)
- Column names: colnames(mydata)
- Dimensions of data: dim(mydata)
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Data read in as data.frame
Access columns via

- number e.g. important.column <- mydata[,3] # access 
third column

Country Year Incidence Deaths

UK 1970 1 0

UK 1980 6 0

UK 1990 34 3

France 1970 32 4

France 1980 17 2

France 1990 12 0

Belgium 1970 5 0

… … … …
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Data read in as data.frame
Access columns via

- number e.g. important.column <- mydata[,3] # access third column
- names e.g. incidence <- mydata$Incidence # access incidence column

incidence <- mydata[,”Incidence”]
Country Year Incidence Deaths

UK 1970 1 0

UK 1980 6 0

UK 1990 34 3

France 1970 32 4

France 1980 17 2

France 1990 12 0

Belgium 1970 5 0

… … … …
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1) If you know row and/or column location
e.g.  mydata[1,4] # 1st row 4th column
mydata$Incidence[5] # 5th row of ‘Incidence’

Country Year Incidence Deaths

UK 1970 1 0

UK 1980 6 0

UK 1990 34 3

France 1970 32 4

France 1980 17 2

France 1990 12 0

Belgium 1970 5 0

… … … …

More on indexing / slicing / subsetting:
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1) If you know row and/or column location
e.g.  mydata[1,4] # 1st row 4th column
mydata$Incidence[5] # 5th row of ‘Incidence’

Country Year Incidence Deaths

UK 1970 1 0

UK 1980 6 0

UK 1990 34 3

France 1970 32 4

France 1980 17 2

France 1990 12 0
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1) If you know row and/or column location
e.g.  mydata[1,4] # 1st row 4th column
mydata$Incidence[5] # 5th row of ‘Incidence’
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1) If you know row and/or column location
e.g.  mydata[1,4] # 1st row 4th column
mydata$Incidence[5] # 5th row of ‘Incidence’

Country Year Incidence Deaths

UK 1970 1 0

UK 1980 6 0

UK 1990 34 3

France 1970 32 4

France 1980 17 2

France 1990 12 0

Belgium 1970 5 0

… … … …

More on indexing / slicing / subsetting:

2) If you know value in row and/or column but not location

e.g. mydata[mydata$Country==“UK”,] 
# rows with column is equal to ‘UK’

mydata[(mydata$Country==“UK” & (mydata$Year<1985), ] 
# UK data prior to 1985
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1) If you know row and/or column location
e.g.  mydata[1,4] # 1st row 4th column
mydata$Incidence[5] # 5th row of ‘Incidence’

Country Year Incidence Deaths

UK 1970 1 0

UK 1980 6 0

UK 1990 34 3

France 1970 32 4

France 1980 17 2

France 1990 12 0

Belgium 1970 5 0

… … … …
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e.g. mydata[mydata$Country==“UK”,] 
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mydata[(mydata$Country==“UK” & (mydata$Year<1985), ] 
# UK data prior to 1985
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Over to you … 

Open `Practical_P01_2.R` in Rstudio

GUIDANCE:
Write your answers next to #Answer:
Error fixing can depend on you doing two things
Fixing the code OR Fixing the data file itself
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What we’ve done:
- read in data files and saved them as data.frames
- stored additional columns in the data.frame
- accessed data from data.frame by location and by value
- used logical expressions (to find equality and to search data.frame by value)
- encountered (and solved) several common issues with data file reading
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Plot an x-y chart: plot(x=… y=…)
Add a title by adding an option to the plot: main=…
Add labels to the x and y axes: xlab=…, ylab=…
You find these options (and many more) by checking the help file for the plot you want
You can customise almost any aspect

Session 3: Plots
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Session 3: Histogram

Histograms are made using: hist(…)
Often the options are the same for different plot types, 

– e.g. title: main=…
– E.g.labels to the x and y axes: xlab=…, ylab=…

You find these options (and many more) by checking the help file
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Session 3: Multiple plots

Plot multiple charts of any type
Use: par(mfrow=c(1,2)) 
– Multi-Figure ROW-wise
– First number = number of rows
– Second = number of columns

Then run your plotting code
Plot window remains in this layout until you change it
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Session 3: Practical

• Practical! (`Practical_P01_3.R`)
• There are some advanced exercises at the end if you get there
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Session 3: Summary

We’ve:

– Made some basic plots
– Learned how to change options to add titles and labels
– Learned how to customise colours
– Practiced adding more than 1 chart
– Exported a figure
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Take-away messages from this introduction:
-Comment everything
-Check each line of code is doing the right thing before writing more
-Name variables sensible things
e.g. IncidenceRate <- mydata[, 2] is better than A <- mydata[, 2] 
-If you are having a problem, other people will have had it too … Google / 
StackOverflow etc. are your friends

Summary
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