
Introduction to R

0

What is R?

Programming language
– Free, open source core, maintained and regularly updated
– Statistics and data-focussed
– Add-on packages made by users

ggplot2

ade4

desolve

NHPoisson

data.table

knitr

lubridate

time

faraway

devtools

matrixStats

igraph

network

MASS

stats

lmf

dplyr

reshape2

scales

R core

1

Why use R?

Free
Active development
No limit on what you can do:
– Statistics
– Data cleaning/processing
– Interacting with websites
– …

2

Overview of session and learning objectives

1. Objects 2. Data files 3. Plotting

3

1. Objects 2. Data files 3. Plotting

Execute statements for:
• displaying data on a plot
• personalising your plot e.g.

colour, axis labels, title

Consider:
• different ways to plot data

Familiarise yourself with:
• RStudio
• working directory

Execute statements for:
• basic R functionality
• built-in R functions
• ask R for help with a

function

Consider:
• how to search for help

online

Write code to:
• explore basic R functionality

Execute statements for:
• reading files
• viewing data
• manipulating data

Consider:
• different ways to access the

same information
• how to trouble-shoot file

read in issues

Write code:
• to correct an issue

Overview of session and learning objectives

4

• Open RStudio
• Set your working directory to wherever you saved the folder

of practicals:
– Session à Set working directory à Choose directory
– Then navigate to the right folder

Session 1: Set working directory

5

Session 1: RStudio

1. Script
Window

2. Console
Window

3. Help and
Plots

4.Environment

6

Script window
Can have multiple R files open in tabs

7

marks a
commented line
When sent to
console, does not
get run
RStudio shows
comments in a
different colour

“Syntax
highlighting”
RStudio shows R
code in different
colours
according to
what it is Keep your script tidy:

- Space out sections
- Write useful comments

8

Console window

Where R code
from the script
window is run

Commands and
results in same
window

Ctrl+enter
(Windows)

9

Help, Plotting,
packages
Use different
tabs depending
on what you
need

10

Objects in your
environment, and
history of
commands run.
Use different tabs
depending on what
you need

11

Running lines of code from script window
– Buttons – “Run” at the top of script window
– Shortcut – Ctrl + Enter (Windows); Cmd + Enter (Mac)

Run single lines or multiple lines

Session 1: Running / executing

12

Create objects in the workspace, or read them in from files using the
“assignment operator”: <-
– my.object <- “orange”
– this.object <- c(1, 2, 3)

Then these objects exist in the workspace.
Check for them by looking in the environment tab
Or running the command: objects()

Session 1: Creating objects

13

Objects:
– Single items (atomic)
– Vectors
• Access elements of vectors

Session 1: Creating objects

object1 <- 546.32
object1 <- “orange”

object1 <- c(1.15, 2.33, 3.84)
object1[2]

14

Objects:
– Single items (atomic)
– Vectors
• Access elements of

vectors
– Data frames
• Access elements of data

frames by row and
column

Session 1: Creating objects

df1 <- data.frame(col1=c(1,2,3),
col2=c(“cat”, “dog”, “bear”))

col1 col2
1 “cat”
2 “dog”
3 “bear”

df1[3, 2]

Use this function to
define a data frame

Set the first column to
be a vector of
numbers

Second column
a vector of
names

Column
names

Row Column

15

Session 1: Creating objects

• Objects:
• Single items (atomic)
• Vectors
• Access elements of vectors

• Data frames
• Access elements of data frames by row and column

• Matrices
• Similar to data frames
• (key difference in practical!)
• Access elements of matrices in the same way

• Lists

16

Objects are of certain types, called classes:

– Character: “a”, “dog”, “orange”
– Integer: 1, 2, 658, -32
– Numeric: 1.2, 3.141592653, -2.1x10-4

– Logical: TRUE/FALSE
– Date: “2015-07-25”

NAs are missing values and can be of any type

Session 1: Classes of objects

17

Operations:
– +, -, *, /

In built statistical functions
– Mean, median, log, etc

Manipulating data sets
– Extracting certain columns
– Subsetting by value
– Replacing values

Session 1: Operations

18

Finding help
– From the console:
• “?” if you know the name of the function you’re looking for: ?mean
• “??” to search for something: ??mean

– In R Studio:
• In the “Help” tab
• Search box on the upper right

– Online:
• Stackoverflow is a question-and-answer website
• Lots of error messages explained

Session 1. Finding help

19

• Use the R script called `Practical_P01_1.R`
• Work through it, instructions are in comments:
– # this is a comment

• Enter answers, where it says “Answer:” as a comment

• Save these scripts so you can refer to them later

Session 1: Practical

20

We’ve:
– Created objects of different types
– Performed operations on those objects
– Extracted elements of data frames and matrices
– Created new objects by subsetting

Session 1: Summary

21

Session 2: Data files

Common data file types: .txt .csv (NB: need ‘packages’ to read in .dta .xls
etc.)
Common delimiters: tab (“\t”), space (“ ”), comma (“,”)
Common read in functions: read.table(…), read.csv(…)
Some function options:

- delimiter e.g. sep=“ ”
- column names e.g. header=TRUE

Example: mydata <- read.table(“mydatafile.txt”, header=FALSE, sep=“\t”)

Outputting data to check examples:
- All data: mydata
- First few lines of data: head(mydata)
- Column names: colnames(mydata)
- Dimensions of data: dim(mydata)

22

Data read in as data.frame
Access columns via

- number e.g. important.column <- mydata[,3] # access
third column

Country Year Incidence Deaths

UK 1970 1 0

UK 1980 6 0

UK 1990 34 3

France 1970 32 4

France 1980 17 2

France 1990 12 0

Belgium 1970 5 0

… … … …

23

Session 2: Data files

Data read in as data.frame
Access columns via

- number e.g. important.column <- mydata[,3] # access third column
- names e.g. incidence <- mydata$Incidence # access incidence column

incidence <- mydata[,”Incidence”]
Country Year Incidence Deaths

UK 1970 1 0

UK 1980 6 0

UK 1990 34 3

France 1970 32 4

France 1980 17 2

France 1990 12 0

Belgium 1970 5 0

… … … …

24

Session 2: Data files

1) If you know row and/or column location
e.g. mydata[1,4] # 1st row 4th column
mydata$Incidence[5] # 5th row of ‘Incidence’

Country Year Incidence Deaths

UK 1970 1 0

UK 1980 6 0

UK 1990 34 3

France 1970 32 4

France 1980 17 2

France 1990 12 0

Belgium 1970 5 0

… … … …

More on indexing / slicing / subsetting:

25

Session 2: Data files

1) If you know row and/or column location
e.g. mydata[1,4] # 1st row 4th column
mydata$Incidence[5] # 5th row of ‘Incidence’

Country Year Incidence Deaths

UK 1970 1 0

UK 1980 6 0

UK 1990 34 3

France 1970 32 4

France 1980 17 2

France 1990 12 0

Belgium 1970 5 0

… … … …

More on indexing / slicing / subsetting:

26

Session 2: Data files

1) If you know row and/or column location
e.g. mydata[1,4] # 1st row 4th column
mydata$Incidence[5] # 5th row of ‘Incidence’

Country Year Incidence Deaths

UK 1970 1 0

UK 1980 6 0

UK 1990 34 3

France 1970 32 4

France 1980 17 2

France 1990 12 0

Belgium 1970 5 0

… … … …

More on indexing / slicing / subsetting:

27

Session 2: Data files

1) If you know row and/or column location
e.g. mydata[1,4] # 1st row 4th column
mydata$Incidence[5] # 5th row of ‘Incidence’

Country Year Incidence Deaths

UK 1970 1 0

UK 1980 6 0

UK 1990 34 3

France 1970 32 4

France 1980 17 2

France 1990 12 0

Belgium 1970 5 0

… … … …

More on indexing / slicing / subsetting:

2) If you know value in row and/or column but not location

e.g. mydata[mydata$Country==“UK”,]
rows with column is equal to ‘UK’

mydata[(mydata$Country==“UK” & (mydata$Year<1985),]
UK data prior to 1985

28

Session 2: Data files

1) If you know row and/or column location
e.g. mydata[1,4] # 1st row 4th column
mydata$Incidence[5] # 5th row of ‘Incidence’

Country Year Incidence Deaths

UK 1970 1 0

UK 1980 6 0

UK 1990 34 3

France 1970 32 4

France 1980 17 2

France 1990 12 0

Belgium 1970 5 0

… … … …

More on indexing / slicing / subsetting:

2) If you know value in row and/or column but not location

e.g. mydata[mydata$Country==“UK”,]
rows with column is equal to ‘UK’

mydata[(mydata$Country==“UK” & (mydata$Year<1985),]
UK data prior to 1985

29

Session 2: Data files

1) If you know row and/or column location
e.g. mydata[1,4] # 1st row 4th column
mydata$Incidence[5] # 5th row of ‘Incidence’

Country Year Incidence Deaths

UK 1970 1 0

UK 1980 6 0

UK 1990 34 3

France 1970 32 4

France 1980 17 2

France 1990 12 0

Belgium 1970 5 0

… … … …

More on indexing / slicing / subsetting:

2) If you know value in row and/or column but not location

e.g. mydata[mydata$Country==“UK”,]
rows with column is equal to ‘UK’

mydata[(mydata$Country==“UK” & (mydata$Year<1985),]
UK data prior to 1985

30

Session 2: Data files

Over to you …

Open `Practical_P01_2.R` in Rstudio

GUIDANCE:
Write your answers next to #Answer:
Error fixing can depend on you doing two things
Fixing the code OR Fixing the data file itself

31

Session 2: Data files

What we’ve done:
- read in data files and saved them as data.frames
- stored additional columns in the data.frame
- accessed data from data.frame by location and by value
- used logical expressions (to find equality and to search data.frame by value)
- encountered (and solved) several common issues with data file reading

32

Session 2: Summary

Plot an x-y chart: plot(x=… y=…)
Add a title by adding an option to the plot: main=…
Add labels to the x and y axes: xlab=…, ylab=…
You find these options (and many more) by checking the help file for the plot you want
You can customise almost any aspect

Session 3: Plots

33

Session 3: Histogram

Histograms are made using: hist(…)
Often the options are the same for different plot types,

– e.g. title: main=…
– E.g.labels to the x and y axes: xlab=…, ylab=…

You find these options (and many more) by checking the help file

34

Session 3: Multiple plots

Plot multiple charts of any type
Use: par(mfrow=c(1,2))
– Multi-Figure ROW-wise
– First number = number of rows
– Second = number of columns

Then run your plotting code
Plot window remains in this layout until you change it

35

Session 3: Practical

• Practical! (`Practical_P01_3.R`)
• There are some advanced exercises at the end if you get there

36

Session 3: Summary

We’ve:

– Made some basic plots
– Learned how to change options to add titles and labels
– Learned how to customise colours
– Practiced adding more than 1 chart
– Exported a figure

37

Take-away messages from this introduction:
-Comment everything
-Check each line of code is doing the right thing before writing more
-Name variables sensible things
e.g. IncidenceRate <- mydata[, 2] is better than A <- mydata[, 2]
-If you are having a problem, other people will have had it too … Google /
StackOverflow etc. are your friends

Summary

38

