
Programming Skills:
more R fun(ctionality)

Modern Techniques in Modelling

Introduction

What we will introduce in this session

– ‘control statements' to automate and increase functionality

– 'functions' in R and how to write your own

– 'packages' in R to use other people’s code

– 'sourcing’ other code from different files

2

Control Statements

Types of Control Statements

– ‘Loops’ are what they sound like, they repeatedly loop through a bit
of code, evaluating it each time. Most programming languages have
loops, let’s look at the two popular ones:
• ‘for’ loops
• ‘while’ loops

– Other helpful control statements are:
• ‘if-else’ statements
• ‘break’ / ‘next’ statements

4

For-loops

Let’s take a look at an example:

square.vector <- c()
for (counter in 1:10){

counter.square <- counter^2
square.vector <- c(square.vector,

counter.square)
}

What is this doing?

5

While-loops

Let’s take a look at an example:

x <- 5; # set value of x
while (x > 0){

x <- x - 1 # on every loop, minus 1 from x
print('x is positive')

}

Be careful with ‘while’ loops…

6

If-Else statements

Let’s take a look at an example:

if (x < 0){
print('warning: x is negative')

} else{
print('x is positive, carry on')

}

if (x < 0){
print('warning: x is negative')

}

‘if ’ does not need to be followed by ‘else’

7

Break statement

An example:

square.vector <- c()
for (counter in 1:10){

counter.square <- counter^2
if (counter.square > 80){

break
}
square.vector <- c(square.vector,

counter.square)
}

What will square.vector equal when we run this?
What will counter equal when we run this?

8

Nested Statements

– You can add as many statements to your code as you like

9

Nested Statements

An example:
initialise your variables
index.mort <- 0
index.ps <- 0
mortality.rate <- matrix(,nrow=3,ncol=3)

Loop around the possible values for mort
for (mort in c(103, 401, 322)){

index.mort <- index.mort + 1
index.ps <- 0

Loop around the possible values for pop size
for (ps in c(1e4, 5e4, 7.5e4)){

index.ps <- index.ps + 1

mortality.rate[index.mort,index.ps] <-
10000 * mort / ps

}
} 10

Sometimes loops are difficult to read, difficult to write, and take up a lot of
lines of code

Often there are multiple ways of achieving the same goal in R – without
loops.

THINK: what is a) quicker to run, b) easier to read

Loop alternatives

11

Let’s rewrite our previous example:
Define the number of deaths
mort <- c(103, 401, 322)
Define the population size
ps <- c(1e4, 5e4, 7.5e4)
Enumerate all the combinations of mort and ps
pop.epi <- expand.grid(mort.val = mort, ps.val = ps)
Calculate the mortality rate per 10,000
mortality.rate <- 10000 * pop.epi$mort.val /

pop.epi$ps.val

Functions

What is an R function?

Any set of operations that, when given a set of arguments (or NULL),
returns an object

AND
where the set of operations are enclosed within the function{}
keyword

13

What is an R function?

VaccineThreshold function takes two arguments
VaccineThreshold <- function(trans.rate,
recovery.rate){

equation for R0 in an SIR model
R0 <- trans.rate / recovery.rate

equation for the critical vaccination
threshold

vaccine.threshold <- 1 - 1/R0

output of the function
return(vaccine.threshold)

}

VaccineThreshold(1, 0.2)

14

What is an R function?

Compare this regular R `script’:
#Example of an R script
a <- 1; b <- -4; c <- -2
sol <- c(0,0)
sol[1] <- (-b + sqrt(b^2 - 4*a*c))/(2*a)
sol[2] <- (-b - sqrt(b^2 - 4*a*c))/(2*a)
print(sol)

To this function:
#Example of an R function
quadratic.soln <- function(a,b,c){

sol <- c(0,0)
sol[1] <- (-b + sqrt(b^2 - 4*a*c))/(2*a)
sol[2] <- (-b - sqrt(b^2 - 4*a*c))/(2*a)
return(sol)

}
quadratic.soln(1,-4,-2)
quadratic.soln(b=-4,c=-2,a=1)

15

Why do we need to use functions?

16

An aside on Scoping

– Scoping is how R knows where to look for value assignments
e.g. print(a) where does R look for a?

– R looks for a in its current working environment (e.g. function or top
level workspace), if it can’t find it, it looks in the level above, then
the next level above etc.

– If it can’t find it in any of these environments, R will throw an error

17

An aside on Scoping

– But why does it matter? Let’s look at an example:
Reff.calc <- function(R0){

reff <- R0 * imm.prop
}

– If we haven’t defined imm.prop, there’s an error (not bad),
otherwise it might use a previously defined value that you might not
expect, and you’ll never know (very bad)

– You can find out what’s in your working environment by typing ls()
and remove a variable by rm(imm.prop)

18

Packages

– A package is a bundle of functions, already written and documented
by another R user

– Often there is a package with functions already written to save you
reinventing the wheel

– In Rstudio, either GUI: Tools > Install Packages... or in
console type install.packages("myPackage")

– Now, when you want to use a package, simply type
library(myInstalledPackage)

19

Sourcing code from different files

– You may want to split your code between multiple .R files
• readibility: too much code for one document
• organisation: group different functions into the same thematic files
• error reduction: any replication of code writing WILL lead to errors (better to

be lazy!)

– Simply write source("myfilename.R") into a script / function, and
R will read in the contents of myfilename.R at the point where
source is called

– You can use your knowledge of scoping to make sure you do this
correctly!

20

Over to you

– Open up Practical_P02_ProgrammingSkills.R

21

