
Plotting model output
with ggplot2

Modern Techniques in Modelling

Introduction

Tidyverse

– The tidyverse suite of R packages is designed to make working with
data as easy as possible

– The relevant packages from tidyverse for us are
• ggplot2: for plotting data
• dplyr: for manipulating data frames
• tidyr: for making data tidy

library(tidyverse)

Long and wide tidy data

– Every data set has its own quirks
– Tidy data frames consist of a number of observations (rows) of

variables (columns), they can be either wide or long
– Data needs to be the right shape for the functions being used
– ggplot2 usually requires long data

Long and wide tidy data

– An example of a wide data frame which we might encounter is the
output of an SIR model

Wide data
– key: this state at this
time

– value: proportion

Long data

Long and wide tidy data

– Our numerical solution to the SIR model is a wide data frame, values
of 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡) at given values of 𝑡

–We pivot the columns in SIR so that the data frame is longer
– This pivoting to a longer data frame helps us put the data in key-
value pairs

– The key is the unique identifier
• state - 𝑆, 𝐼, or 𝑅, and
• time

– The value is the proportion of the population in this state at this time

Long and wide tidy data

– To make this pivot, we specify in pivot_longer()
• which cols are to be converted from being 𝑘 columns of length 𝑛 to one

column of length 𝑛×𝑘
• the names column, state, contains the names of the columns being

pivoted
• the name of the column containing the value (proportion) of each state at

given time
SIR_long <- pivot_longer(

data = SIR,
cols = c(S, I, R),
names_to = 'state',
values_to = 'proportion')

Long and wide tidy data

Wide data
– key: this state at this
time

– value: proportion

Long data

Visualisation with the
grammar of graphics

Visualisation with ggplot2

– R package ggplot2 uses a grammar of graphics
• adding extra commands in a ‘do this, then do this’ manner
• assign variables in data frame to aesthetic options in the plot
• choose a plotting style for how to display these variables
• adjustments to axis scales
• adjustments to colors, themes, etc.
• additional annotation

– Focus is on visual relationships between variables rather than
drawing points and lines

– Options are properties of the elements of the plot rather than of plot
itself

Visualisation with ggplot2

– How do we tell the ggplot() function to make a plot?
• Load the ggplot2 package, which contains the ggplot() function
• Specify a data frame to use, containing the variables we want to plot

library(ggplot2)
ggplot(data = my.data.frame)

Visualisation with ggplot2

– How do we tell the ggplot() function to make a plot?
• Then we set some aesthetic options to tell R which variables from
my.data.frame to map to the 𝑥 and 𝑦 axes of the plot

ggplot(data = my.data.frame,
aes(x = my.x.variable,

y = my.y.variable))

Visualisation with ggplot2

– How do we tell the ggplot() function to make a plot?
• Geometries are the shapes we use to draw plots, e.g. lines, points, polygons,

bars, boxplots
• We will use the line geometry to build a time series plot

ggplot(data = my.data.frame,
aes(x = my.x.variable,

y = my.y.variable)) +
geom_line()

–We can set aesthetics aes(...) inside a geometry to modify the
color, fill, alpha transparency, etc. according to a variable in the data
frame

Visualisation with ggplot2

sir_ggplot <-
ggplot(

data = SIR_long,
aes(x = time,

y = proportion)
) +

geom_line(
aes(group = state)

)

– Line geometry takes
each (𝑥!, 𝑦!) pair from the
aes() specification and
joins them with a line
segment

– For each state, we want
to plot a different line

– group aesthetic tells R
that the data in SIR_long
is grouped a particular
way

– Line has proportion on 𝑦
axis, time on 𝑥 axis

Visualisation with ggplot2

Visualisation with ggplot2

– Using our grammar of graphics’ + operator let’s add axis labels to the
plot
• xlab() and ylab() print their argument as axis labels

sir_ggplot <- sir_ggplot +
xlab('Time (days)') +
ylab('Proportion of population')

–We are sequentially adding functions that modify the plot rather
than passing arguments to a plot() to replace default options

Visualisation with ggplot2

Visualisation with ggplot2

– The plot on the previous slide didn’t give us much info on which line is which
– Consider a basic plot that we’ll recycle

sir_ggplot_basic <-
ggplot(data = SIR_long, # where data lives

aes(x = time, # set plot aesthetics...
y = proportion)) + # ...specifying x&y vars

theme_bw() + # grey grid on white bg
xlab('Time (days)') + # replace time as x label
ylab('Population proportion') + # replace proportion as y
theme(legend.position = 'bottom') # change legend placement

– NB no geometry specified
– theme_bw() is a collection of options for theme() that specify a white

background with a light grey grid and black text
– we change the legend placement after we set the default theme, otherwise it

will get overwritten

Visualisation with ggplot2

–Mapping a variable,
e.g. state, to part of our
plot requires it is inside
aes(...)

– Here we have colored
each line by state

– Static options go outside
aes(...)

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
Time (days)

Po
pu

la
tio

n
pr

op
or

tio
n

state I R S

xlab

ylab

color=state

theme_bw()

data=SIR_long

theme(legend.position="bottom")

sir_ggplot_color <-
sir_ggplot_basic +
geom_line(

aes(color = state))

Visualisation with ggplot2

Draw small multiples with
facet_grid(), repeating the
geometry for each level of the
grouping variable on the rows of
the grid

sir_ggplot_facet <-
sir_ggplot_basic +
geom_line() +
facet_grid(

rows = vars(state)
)

where vars() indicates that we
are selecting a list of variables

Relevelling factors

Relevelling factors

– Default behaviours are:
• pivot_longer() respects column order when reshaping
• key column is character variable
• character variables coerced to alphabetic factors

–We can set order of state variable by specifying levels
factor(state, levels = c('S','I','R'))

Relevelling factors

SIR_long$state <-
factor(SIR_long$state,

levels = c('S',
'I',
'R'))

sir_ggplot_lines <-
ggplot(data = SIR_long,

aes(x = time,
y = proportion)) +

theme_bw() +
xlab('Time (days)') +
ylab('Population proportion') +
theme(

legend.position = 'bottom') +
geom_line(aes(color = state))

Plotting multiple
simulations

Grouping in a factorial design

Consider a factorial design for SIR simulations with each combination of
𝛽 = 1.42470,1.56756 and 𝛾 = 0.14286,0.36508

Grouping in a factorial design

– Ultimately want a line for each value of 𝛽, 𝛾 and state
– Build the line plots with color = state as before
– Use small multiples to show a plot for each combination of 𝛽 and 𝛾
–With facet_grid() we specify grouping variables for rows and/or

columns of plot
• Can specify the grouping structure explicitly with facet_grid(rows =
vars(beta), cols = vars(gamma))

• or with row variables ~ column variables,
e.g. facet_grid(beta ~ gamma)

Grouping in a factorial design

SIR_plot_bg_basic <-
ggplot(data =

factorial_sim,
aes(x = time,

y = proportion)) +
xlab('Time (days)') +
ylab('Population proportion') +
theme_bw() +
theme(legend.position =

'bottom')

SIR_plot_bg_grid <-
SIR_plot_bg_basic +
geom_line(aes(color = state)) +
facet_grid(rows = vars(beta),

cols = vars(gamma))

Grouping in Monte Carlo simulation

Consider instead of a factorial design for an SIR we have 100 simulations of
an SIR model from a Monte Carlo simulation. 12 of the 10100 rows are
shown below:

Grouping in Monte Carlo simulation

Pivot the data, as before, and relevel the state variable
sol_sim_long <- pivot_longer(

data = sol_sim,
cols = c(S, I, R),
names_to = 'state',
values_to = 'proportion')

sol_sim_long$state <-
factor(sol_sim_long$state,

levels = c('S', 'I', 'R'))

Grouping in Monte Carlo simulation

–We can group by simulation index, sim, to show each as a line
– Use alpha transparency so we don’t have a giant blob of black

plot_sim <-
ggplot(data = sol_sim_long,

aes(x = time,
y = proportion)) +

geom_line(aes(group = sim), alpha = 0.05) +
facet_grid(cols = vars(state)) +
theme_bw() +
xlab('Time(days)') +
ylab('Proportion of population')

Grouping in Monte Carlo simulation

Grouping in Monte Carlo simulation

– To simplify this plot, we could calculate a 95% interval at each time
for S, I, R and show these

– Use dplyr’s
• group_by() to define a grouping structure, and
• summarise() to calculate summary statistics for each group (median,

upper and lower bounds of a 95% interval)

sol_sim_grouped <- group_by(sol_sim_long,
time, state)

sol_sim_summarised <-
summarise(sol_sim_grouped,

q0.025 = quantile(proportion, probs = 0.025),
q0.500 = quantile(proportion, probs = 0.5),
q0.975 = quantile(proportion, probs = 0.975))

Grouping in Monte Carlo simulation

– Can use multiple geometries with different aesthetics
– Plot the ribbon and then plot the median line
plot_sim_summarised_ribbon <-

ggplot(data = sol_sim_summarised,
aes(x = time)) +

geom_ribbon(aes(ymin = q0.025, # lower edge of ribbon
ymax = q0.975), # upper edge of ribbon

alpha = 0.5, # make semi-transparent
fill = 'skyblue', # fill blue
color = NA) + # no border color

geom_line(aes(y = q0.500)) + # line for median
theme_bw() + # nicer theme
facet_grid(

cols = vars(state)) + # repeat for each state
xlab('Time (days)') + # human friendly axis label
ylab('Population') # human friendly axis label

Grouping in Monte Carlo simulation

Summary

Summary

– ggplot2 uses aesthetics to map variables in data frame to elements
of plot

– Plot is sequentially built up by adding elements
• geometries (e.g. lines, ribbons)
• annotations (e.g. axis labels)
• theme options

– Data needs to be in key-value pairs for plotting
– Data in key-value pairs is easily summarised by key group

Additional Resources

–More help on ggplot2 and the tidyverse is available
– The #r4ds community have TidyTuesday
– Chang (2017) is very useful if a little out of date
–Wickham (2010) on philosophy behind ggplot2
–Wickham (2014) on what tidy data is

Chang, Winston. 2017. R Graphics Cookbook: Practical Recipes for Visualizing
Data. 2nd ed. O’Reilly Media.
Wickham, Hadley. 2010. “A Layered Grammar of Graphics.” Journal of
Computational and Graphical Statistics 19 (1):3–28.
https://doi.org/10.1198/jcgs.2009.07098.
———. 2014. “Tidy Data.” Journal of Statistical Software 59 (1):1–23.
https://doi.org/10.18637/jss.v059.i10.

https://ggplot2.tidyverse.org/reference/index.html
https://www.rstudio.com/resources/cheatsheets/
https://github.com/rfordatascience/tidytuesday
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.18637/jss.v059.i10

