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Abstract  

Case   isolation   and   contact   tracing   can   contribute   to   the   control   of   COVID-19   outbreaks.   However,  

it   remains   unclear   how   real-world   networks   could   influence   the   effectiveness   and   efficiency   of   such  

approaches.   To   address   this   issue,   we   simulated   control   strategies   for   SARS-CoV-2   in   a   real-world  

social   network   generated   from   high   resolution   GPS   data.   We   found   that   tracing  

contacts-of-contacts   reduced   the   size   of   simulated   outbreaks   more   than   tracing   of   only   contacts,  

but   resulted   in   almost   one   third   of   the   local   population   being   quarantined   at   a   single   point   in   time.  

Testing   and   releasing   non-infectious   individuals   reduced   the   numbers   of   quarantined   individuals  

without   large   increases   in   outbreak   size,   but   high   testing   rates   were   required   for   this   to   be   effective.  

Finally,   if   testing   availability   is   constrained,   we   estimated   that   combining   physical   distancing   with  

contact   tracing   could   enable   epidemic   control   while   reducing   the   number   of   quarantined  

individuals.   Our   approach   highlights   the   importance   of   network   structure   and   social   dynamics   in  

evaluating   the   potential   impact   of   SARS-CoV-2   control.   
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Introduction  

 

Non-pharmaceutical   interventions   (NPIs)   remain   central   to   reducing   SARS-CoV-2   transmission     1–3 .  

Such   responses   generally   include:   case   isolation,   tracing   and   quarantining   of   contacts,   use   of   PPE  

and   hygiene   measures,   and   policies   designed   to   encourage   physical   distancing   (including   closures  

of   schools   and   workplaces,   banning   of   large   public   events   and   restrictions   on   travel).   Due   to   the  

varying   economic   and   social   costs   of   these   non-pharmaceutical   interventions,   there   is   a   clear   need  

for   sustainable   strategies   that   limit   SARS-CoV-2   transmission   while   reducing   disruption   as   far   as  

possible.  

 

Isolation   of   symptomatic   cases,   and   quarantine   of   their   contact   (e.g.   household   members),   is   a  

common   public   health   strategy   for   reducing   disease   spread 4,5 .   This   approach   has   been   used   as  

part   of   SARS-CoV-2   control   strategies 6 .   However,   the   relatively   high   reproduction   number   of   the  

SARS-CoV2   virus   in   early   outbreak   stages 7,8 ,   alongside   likely   high   contribution   to   transmission  

from   presymptomatic   and   asymptomatic   individuals 9 ,   means   that   manual   tracing   of   contacts   alone  

may   not   be   a   sufficient   containment   strategy   under   a   range   of   outbreak   scenarios 10 .   As   countries  

relax   lockdowns   and   other   more   stringent   physical   distancing   measures,   combining   the   isolation   of  

symptomatic   individuals   and   quarantine   of   contacts   identified   through   fine-scale   tracing   is   likely   to  

play   a   major   role   in   many   national   strategies   for   targeted   SARS-CoV-2   control 11 .   Modelling   studies  

suggest   that   app-based   tracing   can   be   highly   effective   as   a   containment   strategy   if   uptake   is   high  

(~80%   of   smartphone   users)   and   that   very   large   numbers   of   individuals   could   potentially   be  

quarantined.   However,   these   results,   along   with   those   more   generally   regarding   COVID-19  

transmission,   rely   primarily   on   simulating   or   assuming   the   structure   of   fine-scale   social   networks,  

and   this   may   not   accurately   capture   the   effect   of   contact-based   interventions 12 .   To   fully   understand  

how   contact   tracing   may   be   effectively   combined   with   other   physical   distancing   measures   to  

enable   containment,   while   reducing   the   number   of   people   in   quarantine,   therefore   requires   realistic  

data   on   social   network   structure.  

https://paperpile.com/c/pgUGTg/VJ7N7+1NHia+ei3aV
https://paperpile.com/c/pgUGTg/HyzbL+OGRYM
https://paperpile.com/c/pgUGTg/GAguR
https://paperpile.com/c/pgUGTg/w4Ja+9pbId
https://paperpile.com/c/pgUGTg/eAPw2
https://paperpile.com/c/pgUGTg/JYGjq
https://paperpile.com/c/pgUGTg/xcqMm
https://paperpile.com/c/pgUGTg/q9QHU
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It   is   possible   to   assess   the   potential   effectiveness   of   contact   tracing   by   simultaneously   modelling  

disease   spread   and   contact   tracing   strategies   through   social   systems   of   individuals 13 .   These  

systems   are   usually   simulated   through   parameterisation   with   simple   social   behaviours   (e.g.   the  

distribution   of   the   number   of   physical   contacts   per   individual).   Further   still,   social   systems   may   be  

simulated   as   networks   that   can   be   parameterised   according   to   assumptions   regarding   different  

contexts   (for   example,   with   different   simulated   networks   for   households,   schools   and   workplaces),  

or   using   estimated   contact   rates   of   different   age   groups 14 .   However,   much   less   is   known   about   how  

different   types   of   real-world   social   behaviour   and   the   hidden   structure   found   in   real-life   networks  

may   affect   both   patterns   of   disease   transmission   and   efficacy   of   contact   tracing   under   different  

scenarios 15,16 .   Examining   contagion   dynamics   and   control   strategies   using   a   ‘real-world’   network  

allows   for   a   more   realistic   simulation   of   SARS-CoV-2   outbreak   and   contact   tracing   dynamics.  

 

Datasets   recording   detailed   social   interactions   amongst   people   are   rare,   and   social   networks   are  

instead   commonly   inferred   from   either   self-reported   contacts   (which   rely   on   recall   accuracy   and  

may   miss   some   contact   events)   or   limited   tracking   data   within   single   settings   such   as   schools   and  

workplaces   (and   therefore   missing   contact   events   in   other   contexts   and   ignoring   bridging   between  

contexts).   One   of   the   most   comprehensive   accessible   datasets   on   human   social   interactions  

collected   specifically   for   modelling   infectious   disease   dynamics   was   generated   by   a   2017/18  

citizen   science   project   as   part   of   the   British   Broadcasting   Corporation   (BBC)   documentary  

“Contagion!   The   BBC   Four   Pandemic”.   The   high-resolution   data   collection   focused   on   residents   of  

the   town   of   Haslemere,   where   the   first   evidence   of   UK-acquired   infection   with   SARS-CoV-2   would  

later   be   reported   in   late   February   2020 17 .   Previous   analyses   of   this   dataset   have   shown   that   it   is  

structurally   relevant   to   modelling   disease   spread,   and   hence   holds   substantial   potential   for  

understanding   and   controlling   real-world   diseases 18,19 .   Combining   this   dataset   with   infectious  

disease   transmission   modelling   offers   a   unique   opportunity   to   understand   how   NPIs   can   be   best  

implemented   to   contain   SARS-CoV-2.  

https://paperpile.com/c/pgUGTg/fH9cr
https://paperpile.com/c/pgUGTg/p55cX
https://paperpile.com/c/pgUGTg/Ni6Wd+yw3lz
https://paperpile.com/c/pgUGTg/Di78
https://paperpile.com/c/pgUGTg/3cUgL+33J3J
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Here   we   develop   an   epidemic   model   which   simulates   COVID-19   outbreaks   across   the   Haslemere  

network,   and   assess   the   impact   of   a   range   of   testing   and   contact   tracing   strategies   for   controlling  

these   outbreaks.   We   then   simulate   ‘test   and   release’   strategies   and   physical   distancing   strategies  

and   quantify   how   the   interaction   between   physical   distancing,   contact   tracing   and   testing   affects  

outbreak   dynamics.  

 

Methods  

 

Social   tracking   data  

The   Haslemere   dataset   was   generated   and   described   as   part   of   previous   work 18,19 .   Briefly,   the   data  

were   collected   during   the   2017/18    BBC   Pandemic    project   conducted   in   Haslemere,   Surrey,   UK.  

The   project   involved   a   massive   citizen-science   experiment   to   collect   social   contact   and   movement  

data   using   a   custom-made   phone   app,   and   was   designed   to   generate   data   relevant   to  

understanding   directly   transmitted   infectious   disease 18,19 .   Of   the   1272   individuals   within   Haslemere  

that   downloaded   the   app,   468   individuals   had   sufficient   data   points   at   a   resolution   of   1m   over   three  

full   days   within   the   focal   area   for   further   analysis 18 .   The   dataset   used   here   includes   these   468  

individuals,   with   de-identified   proximity   data   made   available   as   pairwise   distances   (~1   m  

resolution)   at   5   min   intervals   (excluding   11pm-7am) 18 .  

 

Social   network   construction  

In   our   primary   analysis,   we   defined   social   contacts   as   events   when   the   pairwise   distances   between  

individuals   within   a   5   min   time   interval   (calculated   using   the   Haversine   formula   for   great-circle  

geographic   distance 18 )   are   4   m   or   less.   By   doing   so,   we   aimed   to   capture   the   majority   of   relevant  

face-to-face   contacts   (i.e.   those   that   may   result   in   transmission)   over   5   min   periods,   particularly  

given   the   1   m   potential   error 18    on   the   tracking   measurement   during   these   short   time   intervals.  

Furthermore,   this   4   m   threshold   is   within   typical   mobile   phone   Bluetooth   ranges   for   relatively  

https://paperpile.com/c/pgUGTg/3cUgL+33J3J
https://paperpile.com/c/pgUGTg/3cUgL+33J3J
https://paperpile.com/c/pgUGTg/3cUgL
https://paperpile.com/c/pgUGTg/3cUgL
https://paperpile.com/c/pgUGTg/3cUgL
https://paperpile.com/c/pgUGTg/3cUgL
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accurate   and   reliable   detections.   Therefore,   this   contact   dataset   will   also   be   comparable   to  

proximity-based   contacts   identified   through   Bluetooth   contact   tracing   apps,   which   may   be   preferred  

to   real-location   tracking   for   privacy   reasons.   We   considered   the   sensitivity   of   the   network   to   the  

contact   definition   by   testing   six   further   social   networks   from   contacts   defined   using   different  

threshold   distances   spanning   the   conceivable   potential   transmission   range   within   the   5   min  

intervals   (1   m   to   7   m   thresholds).   We   first   measured   the   correlation   of   the   network   structure   (i.e.  

pairwise   contacts)   across   the   seven   networks   using   Mantel   tests.   We   also   measured   the  

correlation   of   each   individual's   degree   (number   of   contacts),   clustering   coefficient   (number   of  

contacts   also   connected   to   one   another),   betweenness   (number   of   shortest   paths   between   nodes  

that   pass   through   an   individual),   and   eigenvector   centrality   (a   measure   that   accounts   both   for   a  

node's   centrality   and   that   of   its   neighbours)   across   the   seven   networks.  

 

The   Haslemere   data   is   a   temporal   dataset   spanning   three   full   days.   While   the   epidemic   model   we  

use   is   dynamic   (see   below   Methods),   the   contagion   process   of   COVID-19   operates   over   a   longer  

time   period   than   three   days.   To   be   able   to   meaningfully   simulate   longer-term   outbreak   dynamics,  

we   quantified   the   data   as   a   static   social   network   in   which   edges   indicate   the   propensities   for   social  

contact   between   nodes.   Temporal   information   is   incorporated   by   weighting   the   edges   using   the  

temporal   contact   information,   instead   of   using   a   dynamic   network   within   the   dynamic   model,   as   this  

would   require   contact   data   over   a   much   longer   period.   In   the   primary   analysis,   we   weighted   the  

edges   as   the   number   of   unique   days   a   dyad   was   observed   together   (but   see   Supplementary  

Information   for   other   temporal   definitions).   Therefore,   the   weight   score   indicates   the   propensity   for  

each   dyad   to   engage   in   a   social   contact   event   on   any   given   day,   whereby   0   =   no   contact,   1   =   ‘weak  

links’   observed   on   the   minority   of   days   (one   third),   2   =   ‘moderate   links’   observed   on   the   majority   of  

days   (two   thirds),   and   3   =   ‘strong   links’   observed   on   all   days.   In   this   way,   the   weights   of   this   social  

network   could   be   included   directly,   and   intuitively,   into   the   dynamic   epidemic   model   (see   below).  

For   sensitivity   analysis,   we   also   created   networks   and   examined   the   correlation   in   dyadic   social  

associations   scores   (using   Mantel   tests).   We   used   edges   specified   as   i)   a   binary   (i.e.   unweighted)  
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network   across   all   days,   ii)   a   raw   (and   ranked)   count   of   5   min   intervals   in   contact,   iii)   a   transformed  

weighted   count   (edge   weight   transformed   as   ,   which   approximates   a   scenario   e  1    interval count  

where   infection   risk   increases   until   ~30mins   of   contact   between   dyads)   and   iv)   a   ‘simple   ratio  

index’   (SRI)   weighting   that   corrects   for   observation   number   as   SRI   score 20 .   The   SRI   score   for   any  

two   individuals   (i.e.   A   and   B)   is   calculated   as:  

 

(1) , SRIA,B =
ObsA,B

Obs + Obs  ObsA B A,B  
 

 

where    Obs    is   the   number   of   5   min   observation   periods   (the   intervals   since   the   start   of   the   day)  

within   which   an   individual   is   recorded   within   4   m   of   another   individual.   

 

Null   network   simulation   approach  

We   used   null   networks 21    to   understand   the   network   properties   that   shape   predictions   of   COVID-19  

spread   under   different   control   scenarios.   Null   networks   can   also   show   how   contagion   may   operate  

in   different   social   environments,   and   which   simulation   approaches   may   be   the   most   similar   to  

real-world   infection   dynamics.   We   created   four   null   network   scenarios   (Fig.   S1)   with   1000   networks  

generated   under   each   of   these.   All   of   the   null   network   scenarios   kept   the   same   number   of   nodes,  

edges,   and   weights   of   these   edges,   as   the   Haslemere   network,   but   were   generated   under   the  

following   nulls:   (1)   ‘edge   null’   (Fig.   S1A)   considered   random   social   associates,   allowing   the   edges  

of   the   network   to   be   randomly   allocated   between   all   nodes;   (2)   ‘degree   null’   (Fig.   S1B)   considered  

individual   differences   in   sociality   but   random   social   links   between   dyads,   so   randomly   swapped   the  

edges   between   nodes   but   maintained   the   degree   distribution   of   the   real   network   (and   was,  

therefore,   even   more   conservative   than   a   power-law   network   simulation   aiming   to   match   real  

differences   in   sociality);   (3)   ‘lattice   null’   (Fig.   S1C)   considered   triadic   and   tight   clique   associations,  

so   created   a   ring-like   lattice   structure   through   assigning   all   edges   into   a   ring,   with   individuals  

connected   to   their   direct   neighbours,   and   those   of   the   second   and   third   order   (i.e.   six   links   per  

https://paperpile.com/c/pgUGTg/Qdtp
https://paperpile.com/c/pgUGTg/vDuRB
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individual)   and   then   randomly   removing   excess   links;   (4)   ‘cluster   null’   (Fig.   S1D)   considered   the  

observed   level   of   clustering,   so   created   a   ring   structure   as   described   above   but   only   between  

individuals   observed   as   connected   (at   least   1   social   link)   in   the   real   network,   added   remaining   links  

(sampled   from   4th   order   neighbours),   and   then   rewired   the   edges   until   the   real-world   global  

clustering   was   observed   (~20%   rewiring;   Fig.   S1D).   These   conservative   (and   informed)   null  

models   allowed   connections   to   be   arranged   differently   within   the   network   but   maintained   the   exact  

same   number   of   individuals,   social   connections   and   weights   of   these   social   connections   at   each  

simulation.  

 

Epidemic   model  

Building   on   the   epidemiological   structure   of   a   previous   branching-process   model 10 ,   we   developed   a  

full   epidemic   model   to   simulate   COVID-19   dynamics   across   the   Haslemere   network.   Full   model  

parameters   are   given   in   Table   1.   For   a   given   network   of   individuals,   an   outbreak   is   seeded   by  

randomly   infecting   a   given   number   of   individuals.   All   newly   infected   individuals   are   assigned   an  

‘onset   time’   drawn   from   a   Weibull   distribution   that   determines   the   point   of   symptom   onset   (for  

symptomatic   individuals),   and   the   point   at   which   infectiousness   is   highest   (for   all   individuals).   Each  

individual   is   then   simultaneously   assigned   asymptomatic   status   (whether   they   will   develop  

symptoms   at   their   onset   time),   as   well   as   presymptomatic   status   (whether   or   not   they   will   infect  

before   their   assigned   onset   time),   drawn   from   Bernoulli   distributions   with   defined   probabilities  

(Table   1) .    At   the   start   of   each   day,   individuals   are   assigned   a   status   of   susceptible,   infectious   or  

recovered   (which   would   include   deaths)   based   on   their   exposure   time,   onset   time   and   recovery  

time   (calculated   as   onset   time   plus   seven   days),   and   are   isolated   or   quarantined   based   on   their  

isolation/quarantine   time   (described   below).   The   model   then   simulates   infection   dynamics   over   70  

days.  

 

https://paperpile.com/c/pgUGTg/JYGjq
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Possible   infectors   are   all   non-isolated   and   non-quarantined   infectious   individuals.   Each   day,   all  

susceptible   contacts   of   all   infectors   within   the   network   are   at   risk   of   being   infected.   The  

transmission   rate   for   a   given   pair   of   contacts   is   modeled   as:  

 

(2)  (t, , ) I (u; μ , , )du λ si pi = Asi ei ∫
t

t1
f   i αpi

ωpi  

 

where     is   the   number   of   days   since   the   infector    i    was   exposed,   and     are   the   infector’s t si pi  

symptom   status   (asymptomatic   yes/no,   and   presymptomatic   yes/no,   respectively).   is   the   scaling Asi  

factor   for   the   infector’s   symptomatic   status   (Table   1)   and     is   the   weighting   of   the   edge   in   the Iei  

network   (i.e.   number   of   days   observed   together)   between   the   infector   and   the   susceptible  

individual.   The   probability   density   function     corresponds   to   the   generation   time, (u; μ , , )f   i αpi
ωpi  

which   is   drawn   from   a   skewed   normal   distribution   (see    10    for   details).   Briefly,   this   uses   the   infector’s  

onset   time   as   the   location   parameter   ,   while   the   slant   parameter     and   the   scale   parameter μi αpi  

  both   vary   according   to   the   infector’s   presymptomatic   transmission   status   (Table   1).   This ωpi  

enabled   us   to   simulate   a   predefined   rate   of   presymptomatic   transmission,   while   retaining   a  

correlation   structure   between   onset   time   and   infectiousness,   and   avoiding   a   scenario   whereby   a  

large   number   of   individuals   were   highly   infectious   on   the   first   day   of   exposure   (see   Table   1   and  

data   sharing   for   more   details).  

 

Using   this   transmission   rate,   the   probability   of   infection   between   a   susceptible-infected   pair   of  

individuals    t    days   after   the   infector’s   exposure   time   is   then   defined   as:  

 

(3)  (t, , )  1  e     P si pi =      λ(t,s ,p )i i
     

 

https://paperpile.com/c/pgUGTg/JYGjq
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Note   that   the   recovery   time   threshold   of   seven   days   does   not   affect   infection   dynamics   (as  

transmission   rate    ≈   0   seven   days   after   onset   time),   but   is   instead   used   for   contact   tracing   purposes  

(see   below).    To   test   how   the   above   rate   of   infection   related   to   the   reproduction   number    R 0    and   the  

observed   generation   times,   we   generated   empirical   estimates   of   the   number   of   secondary  

infections   in   the   early   outbreak   stages   of   the   model.   We   ran   1000   trial   simulations   from   a   random  

single   starting   infector   and   quantified   i)   the   mean   number   of   secondary   infections   from   this   case,  

and   ii)   the   time   at   which   each   secondary   case   was   infected.   We   found   that   the   above   equation  

corresponded   to    R 0    =   2.8,   and   a   mean   generation   time   of   5.6   days   (median   =   5   days),   which  

correspond   closely   to   recent   estimates 9,22 .   Nonetheless,   we   performed   sensitivity   analysis   of   R 0    by  

multiplying   the   rate   of   infection   by   a   scaling   parameter   (Table   1).  

 

In   addition   to   the   infection   rate   from   within   the   network,   the   infection   rate   from   outside   the   network  

is   also   simulated   daily   by   randomly   infecting   susceptible   individuals   with   a   probability   of   0.001  

(although   we   also   performed   sensitivity   analysis   of   this   parameter).  

 

We   simulated   different   contact   tracing   scenarios   using   contact   information   from   the   network,   with  

the   aim   of   evaluating   both   app-based   and   manual   contact   tracing   strategies.   Primary   and  

secondary   contacts   of   individuals   are   identified   from   the   network   on   the   day   of   the   infector’s  

symptom   onset   and,   as   such,   contacts   of   asymptomatic   infectors   are   not   traced.   Contacts   who  

have   already   recovered   are   excluded.   Susceptible   contacts   are   traced   with   a   given   probability  

(0.4-0.8   tested   -   see   table   1).   We   assume   that   this   probability   captures   a   wide   range   of   reasons  

why   contacts   might   not   be   traced,   and   it   thus   acts   as   an   intuitive   simplification.  

 

The   isolation   and/or   quarantine   time   of   each   individual   is   determined   based   on   their   infection  

status,   their   symptomatic   status,   whether   they   have   been   traced,   and   the   control   scenario.   We  

consider   four   control   scenarios:   i)   no   control,   where   no   individuals   are   isolated   or   quarantined,   ii)  

case   isolation,   where   individuals   isolate   upon   symptom   onset   after   a   delay   period,   iii)   primary  

https://paperpile.com/c/pgUGTg/1cU6+eAPw2
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contact   tracing   with   quarantine,   where   individuals   isolate   upon   symptom   onset   (after   a   delay)   and  

traced   contacts   are   quarantined   upon   their   infector’s   symptom   onset   (also   after   a   delay),   and   iv)  

secondary   contact   tracing,   as   scenario   iii)   but   including   contacts   of   contacts.   All   isolated   and  

quarantined   individuals   are   contained   for   14   days.  

 

Finally,   we   simulated   a   range   of   testing   efforts   for   SARS-CoV-2.   Each   individual   is   assigned   a  

testing   time   on   isolation   or   quarantine,   with   the   delay   between   containment   and   testing   sampled  

from   a   Weibull   distribution.   A   cap   of   the   maximum   number   of   daily   tests   is   assigned,   and   each   day  

up   to   this   number   of   individuals   are   randomly   selected   for   testing.   Test   results   are   dependent   on  

infection   and   asymptomatic   status,   with   a   false   negative   rate   (i.e.   the   probability   that   an   infectious  

case   will   test   negative)   of   0.5   for   asymptomatic   patients   and   0.1   for   symptomatic   cases 23 ,   and   a  

false   positive   rate   (i.e.   the   probability   that   susceptible   case   will   test   positive)   of   0.02 24 .   Cases   who  

tested   negative   were   immediately   released   from   isolation/quarantine.  

 

A   set   of   default   parameters   were   chosen   to   represent   a   relatively   optimistic   model   of   contact  

tracing,   which   included   a   short   time   delay   between   symptom   onset/tracing   and   isolation/quarantine  

(1-2   days),   and   a   high   proportion   (80%)   of   contacts   traced   within   this   tracked   population   (default  

parameters   highlighted   in   bold   in   Table   1).   We   assumed   that   the   probability   of   tracing   was   constant  

over   time,   and   therefore   independent   of   previous   isolation/quarantine   events,   and   that   all  

individuals   remained   in   quarantine   for   the   full   14   days,   unless   released   via   testing.   We   performed  

sensitivity   tests   on   all   relevant   parameters   (Table   1).  

 

We   ran   each   simulation   for   70   days,   at   which   point   the   majority   of   new   infections   came   from  

outside   the   network   (see   results),   with   all   scenarios   replicated   1000   times.   With   the   null   networks  

(above)   and   physical   distancing   simulations   (below),   we   ran   one   replicate   simulation   on   each   of  

1000   simulated   networks.   Due   to   the   finite   population   size   and   nature   of   the   Haslemere   dataset,   in  

no   simulations   were   all   individuals   in   the   population   infected   under   our   default   settings.   Therefore,  

https://paperpile.com/c/pgUGTg/Z6TJ0
https://paperpile.com/c/pgUGTg/HEPJJ
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for   each   simulation   we   report   the   number   of   cases   per   week,   and   quantify   the   total   number   of  

cases   after   70   days   as   a   measure   of   outbreak   severity.   To   present   the   level   of   isolation   and  

quarantine   required   under   different   scenarios,   we   calculate   the   number   of   people   contained   on  

each   day   of   the   outbreak,   and   average   this   over   the   total   number   of   weeks   to   get   weekly   changes  

in   the   rates   of   isolations   and   quarantines   per   day.  

 

Physical   distancing   Simulations  

We   simulated   a   population-level   physical   distancing   effort,   whereby   a   given   proportion   of   the   ‘weak  

links’   (edges   only   observed   on   a   single   day)   were   removed   but   then   randomly   reassigned   to  

remaining   ‘weak   links’   or   ‘moderate   links’   (edges   observed   on   two   days).   The   benefit   of   this  

simulation   technique   is   that   the   overall   weighted   connectivity   of   the   network   remains   unchanged  

(equal   to   edges*weights)   but   the   number   of   unique   edges   is   decreased   to   the   number   of   weak  

links   selected   to   be   removed   (Fig   S2A-D).   This   is   somewhat   akin   to   a   simple   situation   whereby  

individuals   reduce   their   unique   contacts   (e.g.   to   people   outside   of   their   household)   and   instead  

engage   in   more   social   contacts   with   their   remaining   associates   (e.g.   those   inside   their   household).  

We   also   carried   out   a   more   complex   physical   distancing   simulation,   whereby   the   probability   of   a  

weak   link   being   selected   for   removal   was   inversely   proportional   to   the   raw   count   of   5   min   interval  

connections   observed   for   that   dyad,   and   the   reassignment   of   these   links   to   remaining   edges   was  

proportional   to   the   amount   of   time   dyads   were   together   (Fig   S2E-G).   This   represents   a   scenario  

where   individuals   stop   contact   with   people   they   spend   the   least   time   with,   and   reallocate   this   social  

time   to   the   contacts   that   they   already   spend   the   most   time   with.   

 

The   epidemic   model   code   can   be   accessed   at:    https://github.com/biouea/covidhm  

 

Results  

 

Social   network   properties   and   dynamics  

https://github.com/biouea/covidhm
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Defining   dyadic   contacts   on   a   day-by-day   basis   as   at   least   one   daily   5   min   period   with   a   distance  

of   4   m   (see   Methods)   gave   1616   daily   contact   events   and   1257   unique   social   links   between  

individuals.   The   social   network   defined   in   this   way   was   significantly   and   strongly   correlated   ( r    >0.85  

in   all   cases)   with   social   networks   based   on   other   contact   distances   (from   1-7   m   contact   ranges)   for  

defining   contacts   (Fig.   S3).   Similarly,   social   networks   created   using   different   time-periods   for  

weighting   the   dyadic   contacts   (Fig.   S4)   were   also   strongly   related   to   the   weighting   used   here   (i.e.  

number   of   days   seen   together).   As   such,   this   social   network   quantification   not   only   gives   a  

representative   indication   of   daily   contact   propensities   within   the   relevant   transmission   range  

between   individuals   (see   Methods)   but   also   captures   much   of   the   patterns   and   structure   presented  

by   different   quantifications   of   this   social   system.   

 

Epidemic   model   and   control   scenarios  

Example   outbreaks   across   the   Haslemere   network   of   468   individuals   under   different   control  

scenarios   are   displayed   in   Fig.   1,   with   a   full   animated   visualisation   in   Supplementary   Video   1,   and  

a   Shiny   app   is   available   to   run   individual   outbreak   simulations   (see   data   sharing).   Starting   with   a  

single   infected   individual   (Fig.   1A),   scenarios   with   no   control   measures   quickly   led   to   substantial  

numbers   of   infections   (Fig.   1B-D),   while   contact   tracing   scenarios   reduced   the   number   of   infections  

but   resulted   in   a   large   number   of   contained   cases   in   early-mid   outbreak   stages   (Fig.   1E-G).   Across  

all   simulations,   our   epidemic   model   showed   that   uncontrolled   outbreaks   in   the   Haslemere   network  

stemming   from   a   single   infected   individual   resulted   in   a   median   of   12%   (IQR   =   9.4%-15.8%)   of   the  

population   infected   after   70   days   (Fig.   2).   Isolation   when   symptomatic   resulted   in   9.3%  

(7.9%-11.3%)   of   the   population   infected,   while   primary   contact   tracing   resulted   in   9%   (7.7%-10.5%)  

of   infected.   Secondary   contact   tracing   resulted   in   the   largest   reduction   (7.3%,    6.4%-8.3%)   of   the  

population   infected   after   70   days.   The   number   of   quarantined   individuals   was   very   high   under   both  

primary   and   secondary   contact   tracing,   with   a   median   of   29%   (IQR   =   19%-40%)   of   the   population  

quarantined   during   the   outbreak   peak   with   the   latter   (Fig.   2).   Examining   temporal   dynamics  

showed   that   outbreak   peaks   typically   occurred   within   the   first   1-3   weeks,   and   that   interventions  
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reduced   the   overall   size   of   the   outbreaks   as   well   as   their   growth   rate   (Fig.   2).   The   number   of  

people   required   to   isolate   or   quarantine   followed   a   similar   trajectory   to   the   number   of   cases,  

although   under   secondary   contact   tracing,   substantial   proportions   of   the   population   (13%,  

7%-20%)   were   quarantined   even   at   the   end   of   the   simulations   (Fig.   2).  

 

Null   network   models   based   on   the   Haslemere   data   (and   all   of   which   maintained   the   exact   number  

of   individuals,   connections   and   weights   of   connections,   but   shuffled   network   architecture),   largely  

confirmed   overall   patterns   found   with   the   real-world   network,   albeit   with   some   important   differences  

(Fig.   3).   The   number   of   cases   estimated   using   the   null   networks   was   broadly   similar   to   the  

real-world   network,   although   the   ‘lattice’   and   ‘cluster’   networks   both   slightly   underestimated   the  

number   of   cases   relative   to   the   real-world   network.   Importantly,   the   rate   of   quarantine   varied  

substantially   among   the   null   networks,   especially   under   secondary   contact   tracing   (Fig.   3).   In  

particular,   the   clustered   and   lattice   networks   both   substantially   underestimated   the   number   of  

quarantined   cases,   while   the   ‘degree   null’   network   overestimated   the   number   of   quarantined   cases  

(Fig.   3).   Together,   this   demonstrates   the   importance   of   social   network   structure   in   shaping   this  

contagion   and   the   effectiveness   of   control   measures.  

 

Sensitivity   analysis   of   the   efficacy   of   contact   tracing   under   the   epidemic   model   is   presented   in  

Figures   S5-S10.   As   expected,   outbreak   size   decreased   with   the   percentage   of   contacts   traced   in  

all   scenarios,   and   increased   with   the   reproduction   number   (Fig.   S5),   the   proportion   of  

asymptomatic   cases   (Fig.   S6),   the   proportion   of   pre-onset   transmission   (Fig.   S7),   the   delay  

between   onset/tracing   and   isolation/quarantine   (Fig.   S8),   and   the   number   of   initial   cases   (Fig.   S9).  

These   parameters   also   had   an   effect   on   the   number   of   isolated   contacts.   For   instance,   a   reduced  

delay   time   between   onset   and   case/contact   isolation   resulted   in   not   only   a   reduction   in   the   number  

of   cases,   but   also   a   reduction   in   the   number   of   contacts   required   to   be   traced   (Fig.   S8).   Simulating  

a   range   of   outside   infection   rates   showed   that   this   parameter   had   a   large   effect   on   the   number   of  

cases,   which   increased   with   outside   infection   rate   across   all   intervention   scenarios,   as   did   the  
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number   of   isolated   cases   (Fig.   S10).   The   tradeoff   between   the   number   of   cases   and   the   number   of  

quarantined   cases   was   found   across   the   entirety   of   the   parameter   space   (Figs   S5-S10).  

 

We   also   assessed   how   the   testing   and   releasing   of   isolated   and   quarantined   subjects   might   affect  

the   numbers   of   cases   and   time   spent   in   isolation   and   quarantine,   while   considering   false   positive  

and   negative   rates.   We   estimated   that   increasing   the   testing   capacity   (and   therefore   testing   and  

releasing   more   quarantined   cases)   led   to   only   very   small   increases   in   the   outbreak   size   (median  

7.9%,   IQR   6.8%-9.6%;   Fig.   4).   However,   high   levels   of   testing   led   to   a   substantial   reduction   in   the  

number   of   quarantined   cases   in   both   primary   and   secondary   contact   tracing   scenarios,   with   on  

average   1.7%   (0.7%-3.3%)   and   11.7%   (6%-22%)   quarantined   cases   during   the   outbreak   peaks,  

respectively,   when   testing   capacity   was   50   tests   per   day.   However,   the   number   of   tests   required   to  

reduce   the   numbers   of   quarantined   cases   were   large,   especially   under   secondary   contact   tracing,  

where   19%   of   the   population   (IQR   6%-22%)   required   tests   in   a   single   week   during   outbreak   peaks  

(Fig.   4).  

 

We   simulated   physical   distancing   by   reducing   the   number   of   weak   links   in   the   Haslemere   network,  

while   retaining   the   same   overall   number   of   social   interactions.   We   found   that,   across   control  

scenarios,   physical   distancing   led   to   only   a   small   reduction   in   the   number   of   overall   cases   (Fig.   5).  

Importantly   however,   increasing   physical   distancing   was   associated   with   marked   reductions   in   the  

number   of   quarantined   cases   under   both   primary   (1.2%,   0.5%-2.2%)   and   secondary   contact  

tracing   (5.2%,   2.7%-8.7%),   as   well   as   reducing   the   number   of   tests   required   (Fig.   5).   Simulating  

physical   distancing   using   an   alternative   approach   based   on   the   amount   of   time   spent   with   contacts  

within   days   (see   methods)   yielded   qualitatively   identical   results   to   our   simpler   model   (Fig.   S11).  

 

Discussion  

Through   assessing   the   predicted   spread   of   COVID-19,   alongside   interactions   between   disease  

control   methods,   this   study   highlights   a   number   of   challenges,   and   some   promising   ways   forward,  
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for   medium-term   control   of   SARS-CoV-2.   Although   several   studies   have   attempted   to   predict   the  

efficacy   of   interventions,   and   contact   tracing   in   particular,   for   controlling   the   SARS-CoV-2  

pandemic 10–12 ,   we   have   limited   understanding   of   how   contact   tracing   might   affect   SARS-CoV-2  

transmission   dynamics   in   the   real   world 10–12 .    Compared   to   previous   models,   the   present   study  

examines   transmission   dynamics   in   a   real-world   network,   but   over   a   relatively   small   geographical  

area.   Further,   the   number   of   infections   found   in   our   epidemic   models   were   reasonably   low,   which  

might   reflect   the   fact   that   the   Haselmere   dataset   represents   a   sample   of   a   larger   population.   As  

such,   while   our   study   offers   new   insight   into   local   populations,   we   do   not   know   to   what   extent   the  

dynamics   found   here   will   extrapolate   larger-scale   social   systems.   Nonetheless,   we   have  

demonstrated   that   important   trade-offs   exist   when   intervention   methods   are   applied   within   local  

populations.  

 

In   regards   to   the   effectiveness   of   strategies,   our   model   corroborates   with   models   using   simulated  

social   systems   and   showing   that,   for   a   disease   such   as   COVID-19   with   high   levels   of   transmission  

from   asymptomatic   and   presymptomatic   individuals,   contact   tracing   is   likely   to   be   most   effective  

when   the   proportion   of   traced   contacts   is   high,   when   the   delay   from   notification   to   quarantine   is  

short 10 ,   and,   most   importantly,   when   the   number   of   starting   cases   and   rate   of   movement   into   the  

network   are   low.   In   all   scenarios,   the   tracing   and   quarantining   of   contacts   resulted   in   fewer   cases  

than   case   isolation   alone,   with   the   tracing   of   secondary   contacts   leading   to   fewer   cases   than  

primary   tracing.   Importantly,   however,   regardless   of   model   parameters,   contact   tracing   is   only  

effective   because   it   results   in   a   very   large   number   of   people   being   quarantined   (Fig.   2).   This   is   in  

line   with   a   large-scale   recent   simulation   model   of   app-based   contact   tracing   in   the   UK 12 .   Further,   in  

our   (optimistic)   default   parameter   settings   we   assumed   that   20%   of   contact   tracing   attempts   were  

missed.   This,   combined   with   the   very   large   number   of   quarantined   cases   under   secondary   contact  

tracing   (Fig.   2),   suggests   that   a   majority   of   the   population   could   receive   a   notification   that   they  

should   quarantine   within   the   first   2-3   weeks   of   an   outbreak.   

 

https://paperpile.com/c/pgUGTg/xcqMm+q9QHU+JYGjq
https://paperpile.com/c/pgUGTg/xcqMm+q9QHU+JYGjq
https://paperpile.com/c/pgUGTg/JYGjq
https://paperpile.com/c/pgUGTg/q9QHU
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The   number   of   quarantined   cases   can   be   reduced   through   mass   testing   and   release   of   individuals  

who   return   a   negative   result.   Conversely,   due   to   the   high   false   negative   rates   associated   with  

RT-PCR   tests   for   SARS-CoV-2 23,25 ,   large-scale   test   and   release   strategies   could   result   in   missing  

positive   cases   and   decrease   the   effectiveness   of   contact   tracing.   In   our   model,   increasing   the   rate  

of   testing   (and   release)   of   cases   led   to   a   reduction   in   the   number   of   people   quarantined   with   only   a  

small   increase   in   final   outbreak   size   (Fig.   4),   despite   incorporating   the   relatively   high   false-negative  

rates   observed,   especially   in   asymptomatic   cases 23 .   However,   we   assumed   a   short   delay   between  

isolation/quarantine   and   testing,   so   our   results   on   testing   only   apply   to   situations   where   testing   of  

quarantined   cases   can   be   carried   out   rapidly   (in   less   than   2   days).   Further,   the   secondary   contact  

tracing   scenarios   which   resulted   in   the   largest   reduction   in   outbreak   size   were   associated   with   a  

very   large   number   of   quarantined   contacts   (Fig.   2).   Accordingly,   a   very   high   testing   rate   would   be  

required   to   reduce   the   number   of   quarantined   cases   (Fig.   4),   with   up   to   a   fifth   of   the   population  

requiring   tests   in   a   single   week   during   outbreak   peaks.   Again,   we   cannot   be   sure   to   what   extent  

our   results   will   represent   larger   populations,   but   the   tripartite   relationship   between   the   number   of  

cases,   the   number   of   quarantined   contacts   and   the   number   of   tests   required   will   apply   in   the  

majority   of   scenarios   in   which   rates   of   social   interaction   are   high.  

 

A   very   high   notification   and   quarantine   rate   for   any   contact   tracing   system   may   have  

consequences   for   adherence.   Our   model   is   optimistic   in   its   assumption   that   individuals   isolate  

independently   of   previous   notifications   or   isolations,   and   highly   optimistic   in   its   assumption   of  

100%   adherence   to   quarantine   among   traced   contacts.   In   reality   a   high   notification   and   quarantine  

rate   may   result   in   individuals   being   less   likely   to   undertake   quarantine   in   the   future,   which   in   turn  

will   impact   outbreak   dynamics.   It   has   been   suggested   that   this   can   be   addressed   through   (digital)  

targeted   quarantine   requests   to   the   individuals   at   highest   risk   of   infection,   or   to   those   most   likely   to  

spread   to   others 26 ,   which   could   be   addressed   in   future   studies   using   the   framework   and  

methodology   presented   here.   The   likely   effectiveness   of   these   approaches   in   terms   of   reducing  

outbreak   size   and   keeping   quarantine   rates   low   is   an   important   area   of   ongoing   research.  

https://paperpile.com/c/pgUGTg/Z6TJ0+gfQfH
https://paperpile.com/c/pgUGTg/Z6TJ0
https://paperpile.com/c/pgUGTg/pIMa6
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In   the   absence   of   (or   in   addition   to)   targeted   contact   tracing   approaches,   combining   contact   tracing  

with   other   physical   distancing   measures   may   allow   for   outbreak   control   while   reducing   the   number  

of   people   in   quarantine,   and   the   number   of   tests   required   (Fig.   5).   We   aimed   to   consider   low   to  

moderate   levels   of   physical   distancing,   so   used   a   model   whereby   the   number   of   social   interactions  

remains   the   same,   but   interactions   with   ‘rare’   contacts   are   reassigned   to   ‘common’   contacts.   We  

do   not   have   information   on   household   structure   within   the   Haslemere   dataset,   but   our   physical  

distancing   scenario   is   analogous   to   decreasing   the   level   of   non-household   contacts   and   increasing  

the   level   of   household   contacts.   The   number   of   cases,   as   well   as   the   number   of   quarantined  

individuals   and   tests   required,   decreased   only   slightly   with   the   degree   of   physical   distancing.  

Importantly,   when   physical   distancing   was   in   place,   the   difference   in   the   number   of   cases   between  

primary   and   secondary   contact   tracing   strategies   was   small,   yet   primary   contact   tracing   resulted   in  

fewer   quarantined   cases   and   fewer   tests   required   (Fig.   5).   It   may   therefore   be   the   case   that   when  

physical   distancing   measures   are   in   place   and   contact   rates   are   relatively   low,   primary   contact  

tracing   is   the   most   efficient   strategy.   Further   work   is   required   to   determine   exactly   what   kinds   of  

physical   distancing   measures   would   enable   effective   outbreak   control   alongside   contact   tracing.  

 

Network   structure   can   have   substantial   effects   on   epidemic   model   predictions 27,28 ,   and   our   null  

network   modelling   approach   shows   that   this   is   important   when   considering   SARS-CoV-2   spread  

and   the   effectiveness   of   control   measures   within   real-world   structures.   Indeed,   each   null   model  

maintained   the   same   number   of   people   as   the   real   network,   and   the   same   number   and   strength   of  

social   associations,   but   simply   reordered   the   connections   between   individuals.   This   reordering  

alone   changed   in   the   emerging   predictions,   thus   highlighting   the   importance   of   the   fine-scale  

arrangement   of   social   connections.   Specifically,   null   models   that   randomised   the   order   of   social  

connections,   and   those   that   incorporated   information   on   the   distribution   of   ties   between   individuals,  

appeared   to   match   the   real   network   predictions   best.   On   the   other   hand,   the   lattice   and   clustered  

networks   both   underestimated   outbreak   size,   and   substantially   overestimated   the   effectiveness   of  

https://paperpile.com/c/pgUGTg/XkAch+6WOxH


467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

contact   tracing.   These   results   demonstrate   that   the   use   of   network-based   simulations   of  

SARS-CoV-2   dynamics   requires   caution,   as   even   if   such   models   had   precise   information   on   the  

number   of   individuals   and   amount   of   social   interactions   occurring   within   a   system,   the   assumed  

architecture   of   the   social   network   structure   alone   can   shape   predictions   for   both   the   extent   of  

spread   and   the   usefulness   of   control   strategies.   Furthermore,   through   providing   insight   into   how  

changes   to   network   structure   influences   contagion   dynamics,   the   null   network   simulation   approach  

gives   some   indication   of   how   this   contagion   and   associated   control   strategies   may   operate   in  

different   social   environments.   For   instance,   different   social   structures   may   arise   when   considering  

particular   social   settings   (e.g.   workplaces,   commuting),   some   of   which   may   be   closer   to   the  

extreme   random   edge   null   networks   generated   here,   while   others   may   represent   the   lattice   or  

clustered   null   networks.   Considering   this   structure   will   lead   to   improved   predictions   of   outbreak  

dynamics.  

 

There   are   a   number   of   important   limitations   to   our   study   and   the   current   availability   of   empirical  

data   in   general.   Most   importantly,   this   social   network   is   taken   from   a   single,   small   town   and   over   a  

short   period   of   time   and   we   do   not   know   to   what   extent   the   social   dynamics   will   be   applicable   to  

larger   cities   and   other   contexts   and   over   long   periods.   Therefore,   future   large-scale   efforts   in  

gathering   data   on   dynamic   fine-scale   social   behaviour   over   long   periods   of   time   (ideally   over   the  

entire   contagion   period)   in   major   cities   would   be   of   great   benefit   for   assessing   the   relative   uses   of  

SARS-CoV-2   control   strategies.   Further,   the   Haslemere   data,   while   rich,   does   not   sample   the  

entire   population   of   Haslemere,   and   children   under   the   age   of   13   were   not   included   in   the  

experiment,   which   could   potentially   have   an   impact   on   outbreak   and   social   tracking   dynamics.  

Again,   such   issues   are   also   likely   to   be   prevalent   across   real-world   contact-tracing   attempts,   as   the  

ability   to   track   children   will   be   limited,   particularly   with   app-based   approaches   that   require   a  

smartphone.   It   is   encouraging   that   our   results   broadly   align   with   other,   larger-scale   simulations   of  

contact   tracing   which   explicitly   model   these   limitations,   but   lack   the   fine-scale   social   tracking  

data 12 .   Therefore,   by   supplying   a   general   framework   for   simulating   the   spread   of   COVID-19   on  

https://paperpile.com/c/pgUGTg/q9QHU
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real-world   networks,   we   hope   to   promote   integration   of   multiple   real-world   social   tracking   datasets  

with   epidemic   modelling,   which   may   provide   a   promising   way   forward   for   optimising   contact   tracing  

strategies   and   other   non-pharmaceutical   interventions.  
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Tables   and   Figures  

 

Table   1.    Parameter   values   for   the   epidemic   model.   Numbers   given   for   sampled   parameters   are  

medians   and   interquartile   ranges,   and   default   parameter   settings   for   the   scenario   models   are  

highlighted   in   bold.  

 
Parameter  Assumed   value(s)  Details   and   references  

Sampled    

Incubation   period  5.8   days   (2.6)  9,29  

Serial   interval  Location   =   incubation   period  
 
For   post-symptomatic   transmission,  
slant   =   ∞,   scale   =   2  
 
For   presymptomatic   transmission,  
slant   =   -∞,   scale   =   incubation   period.  

Based   on   data   in    9  

Delay   from   onset/tracing   to   isolation,  
and   from   isolation   to   testing  

1   day   (0.4-1.9)   days   (‘short’)  
 
3.5   days   (2.8-5.2)   days   (‘medium’)  

Assumed   (short)   and    30    (medium)  

Fixed    

Initial   cases  1 ,   5  Assumed  

Scaling   parameter   (and  
corresponding   empirical   estimate   of  
the   reproduction   number   R 0 )  

1   (2.8) ,   2   (3.5)  31  

Percentage   asymptomatic   individuals  20%,    40%  12  

Infectiousness   of   asymptomatic  
individuals  

50%   (relative,   to   symptomatic)  Assumed  

Percentage   individuals   infectious  
pre-onset  

20%,    40%  9,32  

Outside   infection   rate  0.0001 ,   0.001,    0.005,     0.01  Assumed  

Percentage   of   contacts   traced  40%,   60%,    80%  Assumed  

Maximum   number   of   tests  0,   5,   25,   50  Tested  

Test   false   positive   rate  0.02  24  

Test   false   negative   rate  0.1   (symptomatic   patients)  
 
0.5   (asymptomatic   patients)  

Based   data   from   early   infection  
stages   in    23  
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Figure   1    Illustration   of   the  

Haslemere   network   with  

epidemic   simulation  

predictions   for   ‘nothing’   (left  

side)   and   secondary   contact  

tracing   scenarios   (right   side).    A  

The   social   network   of   468  

individuals   (grey   nodes)   with  

1257   social   links   (blue   edges)  

weighted   by   1616   daily  

contacts   (edge   thickness)   and  

a   single   starting   infector   (red).  

Subsequent   panels   show  

progression   of   the   COVID-19  

epidemic   under   the   nothing  

( B,C,D )   and   the   secondary  

contact   tracing   ( E,F,G )  

scenarios.   Red   arrows   show  

an   infection   route,   and   squares  

show   isolated/quarantined  

individuals.   See  

Supplementary   Video   1   for  

animated   visualisation   of   all  

scenarios,   and   a   Shiny   app   is  

available   to   run   individual  

outbreak   simulations   (see   data  

sharing)  
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Figure   2    Epidemic   model   predictions   of   outbreak   size   and   number   of   people   isolated/quarantined  

under   different   non-pharmaceutical   intervention   scenarios   in   the   Haslemere   network.    A    cumulative  

number   of   cases,   number   of   people   isolated   per   day,   and   number   of   people   quarantined   per   day  

under   each   scenario.   Lines   and   shaded   areas   represent   median   and   interquartile   range   from   1000  

simulations.    B    Example   networks   from   a   single   simulation   of   each   scenario   at   day   20   of   the  

outbreak.   See   figure   1   for   network   details.  
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Figure   3   A    Epidemic   model   simulations   of   outbreak   size   and   number   of   people  

isolated/quarantined   under   different   null-network   permutations   based   on   the   Haslemere   network  

(see   methods   for   details).   Lines   and   shaded   areas   represent   median   and   interquartile   range   from  

1000   simulations.    B    Example   networks   showing   an   infection   simulation   (with   secondary   contact  

tracing,   after   20   days)   on   each   null   network.   See   Figure   1   for   network   details.  
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Figure   4    Epidemic   model   predictions   of   outbreak   size   and   number   of   people   isolated,   quarantined  

and   tested   under   different   testing   rates   in   the   Haslemere   network.   Tests   are   plotted   per   week  

rather   than   per   day   for   visualisation   purposes.   Lines   and   shaded   areas   represent   median   and  

interquartile   range   from   1000   simulations.   
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Figure   5   A    Epidemic   model   simulations   of   outbreak   size   and   number   of   people   isolated,  

quarantined   and   tested   under   different   levels   of   physical   distancing   in   the   Haslemere   network.   The  

percentage   reduction   refers   to   the   number   of   ‘weak   links’   reassigned   within   the   networks   to  

increase   clustering   (see   methods).   Tests   are   plotted   per   week   rather   than   per   day   for   visualisation  

purposes.   Lines   and   shaded   areas   represent   median   and   interquartile   range   from   1000  

simulations.    B    Example   networks   showing   an   infection   simulation   (with   no   control,   for   70   days)   at  

each   level   of   physical   distancing.   See   figure   1   for   network   details.  


