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Abstract  
Background 
Some key gaps in the understanding of SARS-CoV-2 infection remain. One of them is the contribution 
to transmission from individuals experiencing asymptomatic infections. We aimed to characterise the 
proportion and infectiousness of asymptomatic infections using data from the outbreak on the Diamond 
Princess cruise ship. 
 
Methods 
We used a transmission model of COVID-19 with asymptomatic and presymptomatic states calibrated 
to outbreak data from the Diamond Princess, to quantify the contribution of asymptomatic infections to 
transmission. Data available included the date of symptom onset for symptomatic disease for 
passengers and crew, the number of symptom agnostic tests done each day, and date of positive test 
for asymptomatic and presymptomatic individuals.  
 
Findings 
On the Diamond Princess 74% (70-78%) of infections proceeded asymptomatically, i.e. a 1:3.8 case-to-
infection ratio. Despite the intense testing 53%, (51-56%) of infections remained undetected, most of 
them asymptomatic. Asymptomatic individuals were the source for 69% (20-85%) of all infections. 
While the data did not allow identification of the infectiousness of asymptomatic infections, assuming no 
or low infectiousness resulted in posterior estimates for the net reproduction number of an individual 
progressing through presymptomatic and symptomatic stages in excess of 15.    
 
Interpretation 
Asymptomatic SARS-CoV-2 infections may contribute substantially to transmission. This is essential to 
consider for countries when assessing the potential effectiveness of ongoing control measures to 
contain COVID-19. 
 
 
Funding 
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Research in context 
Evidence before this study 
It is known that a non-trivial proportion of infections with SARS-CoV-2 remain asymptomatic, and there 
is evidence that asymptomatic individuals contribute to transmission. However, empirical estimates for 
the proportion of infections that remain asymptomatic are often difficult to interpret due to opportunistic 
sampling frames combined with low and imbalanced participation from individuals with and without 
symptoms, which have resulted in a wide range of values (between 6-96%), with a suggestion of 
variation across age-groups. Quantitative estimates for the contribution of asymptomatic SARS-CoV-2 
infections to ongoing transmission are absent.  
 
Added value of this study 
In this study we calibrated a mechanistic transmission model to data from the Diamond Princess cruise 
ship outbreak, which is unique in that it occurred in a closed population, nearly all individuals were 
tested regardless of symptoms at least once and detailed open access data are available. Our data-
driven model found that 74% (95% posterior interval (PI) = 70-78%) of SARS-CoV-2 infections 
proceeded asymptomatically, a case-infection ratio of 1:3.8 (1:3.3-1:4.4). We found that because 
systematic testing irrespective of symptoms was only implemented in the last days before 
disembarkation, over half (53%, (51-56%) of infected individuals were not detected during this 
outbreak.  
 
Our model provides the first quantitative estimates of the proportion of all transmission driven by 
asymptomatic individuals. In a context of rapid and near complete case-isolation as well as quarantine, 
asymptomatic infections cases were responsible for 69% (20-85%) of all new infections. Remaining 
transmission was equally distributed between the presymptomatic and symptomatic phases of COVID-
19 which is in line with previous findings. Part of the remaining uncertainty is due to the relative 
infectiousness of asymptomatic individuals, which we were unable to estimate. However, an exploration 
of the scenarios with a low relative infectiousness (e.g. 0-25% compared to symptomatic individuals) 
showed that to replicate the data a very high net reproduction number was required for individuals 
progressing through presymptomatic and symptomatic stages (15.5-29.1). 
 
Implications of all the available evidence 
In this outbreak, the majority of infections proceeded asymptomatically, and remained mostly 
undetected. Asymptomatic individuals likely contributed substantially to SARS-CoV-2 transmission. 
Hence, control measures, and models projecting their potential impact, need to look beyond the 
symptomatic cases if they are to understand and address ongoing transmission.   
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Introduction  
The ongoing COVID-19 pandemic has spread rapidly across the globe, and the number of individuals 
infected with SARS-CoV-2, outstrips the number of reported cases (1,2). One key reason for this may 
be that a substantial proportion of cases proceed asymptomatically, i.e. they either do not experience, 
or are not aware of symptoms throughout their infection but despite that can transmit to others. In this 
sense, asymptomatic infections differ from presymptomatic ones, which describes the part of the 
incubation period before symptoms develop during which onward transmission is possible.  
 
While pre- and asymptomatic individuals do not directly contribute to morbidity or mortality in an 
outbreak, they can contribute to ongoing transmission, as has been shown for COVID-19, (3–5) and 
other diseases (6–8). Particularly, purely symptom-based interventions (e.g., self-isolation upon onset 
of disease) will not interrupt transmission from asymptomatic individuals and hence may be insufficient 
for outbreak control if a substantial proportion of transmission originates from pre- and asymptomatic 
infections. (4)  
 
An estimate of the proportion of infections that never progress to symptomatic disease, also known as 
the case-to-infection ratio, provides an indicator of what proportion of cases will remain undetected by 
symptom-based case detection (9). Evidence so far has suggested that the proportion of SARS-CoV-2 
infections that proceed asymptomatically is likely non-trivial (10–15), although empirical data is often 
difficult to interpret due to opportunistic sampling frames (16) combined with low (17) and imbalanced 
participation from individuals with and without symptoms (18). While it is likely that transmission from 
asymptomatic individuals can occur, (19) quantitative estimates are effectively absent. Improved 
understanding of the relative infectiousness of asymptomatic SARS-CoV-2 infection, and its 
contribution to overall transmission will greatly improve the ability to estimate the impact of intervention 
strategies. (9) What is known is that in the presence of active case-finding, presymptomatic infections 
and symptomatic cases contribute almost equally to overall transmission, as both modelling and 
empirical studies have shown. (11,12)  
 
Documented outbreaks in a closed population with extensive testing of individuals regardless of 
symptoms provide unique opportunities for improved insights into the dynamics of an infection, as 
knowledge of the denominator and true proportion infected are crucial, yet often unavailable in other 
datasets. Here, we use data from the well-documented outbreak on the Diamond Princess cruise ship 
to capture the mechanics of COVID-19 in a transmission model to infer estimates for the proportion, 
infectiousness and contribution to transmission of asymptomatic infections. 
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Methods 
Data 
Data from the Diamond Princess outbreak have been widely reported (13,20,21). On January 20th, the 
Diamond Princess cruise ship departed from Yokohama on a tour of Southeast Asia. A passenger that 
disembarked on January 25th in Hong Kong subsequently tested positive for SARS-CoV-2 on February 
1st, reporting the date of symptom onset as January 23rd. 
 
After arriving back in Yokohama on February 3rd, all passengers and crew were screened for 
symptoms, and those screening positive were then tested. The ship began quarantine on February 5th 
with all passengers confined to their cabins and crew undertaking essential activities only. At the start 
of quarantine there were 3,711 individuals on board (2,666 passengers and 1,045 crew) with a median 
age of 65 (45-75 interquartile range).  
 
Testing capacity was limited until February 11th and before then the majority of individuals tested had 
reported symptoms, referred to here as ‘symptom-based testing’. All individuals with a positive test at 
any stage were promptly removed from the ship and isolated. After February 11th, testing capacity 
increased and the testing of individuals irrespective of symptoms, referred to here as ‘symptom-
agnostic testing’, was scaled up. In total, 314 symptomatic and 320 pre- or asymptomatic infections 
were reported before disembarkation was principally completed on February 21st.  
 
We extracted the following data from (13,20,21) (see Figure 1). Firstly, the number of symptomatic 
cases per day (i.e. those testing positive having reported symptoms) by date of symptom onset, 
separately for passengers and crew. The date of symptom onset was not available for 115 cases, 
which we accounted for in our model structure by assuming they were distributed over time proportional 
to those cases with a reported date of symptom onset (see supplementary materials for details). 
Secondly, we extracted the number of pre- or asymptomatic infections identified per day (i.e. individuals 
testing positive having not reported symptoms) by date of test. The test date was not available for 35 
pre- or asymptomatic individuals between the February 6-14th, which we assumed were distributed 
over time proportional to the daily number of tests performed amongst individuals not reporting 
symptoms. No data were available on how many individuals that tested positive in the absence of 
symptoms became symptomatic after disembarkation. Finally, we extracted the number of tests 
performed per day amongst individuals not reporting symptoms.  
 
Model 
We built a deterministic, compartmental model to capture transmission, disease development and the 
effect of interventions on board the Diamond Princess. Following exposure, after which an individual is 
assumed to test negative for SARS-CoV-2 for the duration of the latent phase (see table 1), a 
proportion of individuals proceed asymptomatically with the remainder becoming presymptomatic. 
Individuals in the presymptomatic, asymptomatic or symptomatic state are assumed to test positive and 
have independent infectiousness, expressed relative to those with symptomatic disease.  
 
Individuals with presymptomatic infection are either detected through symptom-agnostic testing before 
being removed from the ship, or develop symptomatic disease. Once symptomatic disease starts, 
individuals can either recover undetected on the ship or, following the start of quarantine on February 
5th, be detected through symptom-based testing and removed from the ship with an average delay of 
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one day following symptom onset. We allowed for individuals to test positive after their infectious period 
for an average of seven days. (22) After this, we assume they would test negative.  
 
Individuals with asymptomatic infections either recover undetected on the ship, or are detected by 
symptom-agnostic testing before being removed from the ship. See supplementary figure 1 for model 
diagramme. The proportion of pre- and asymptomatic individuals tested and removed from the ship per 
day was determined by the number of tests performed per day amongst individuals not reporting 
symptoms (Figure 1F).  
 
Crew and passengers were modelled separately, using stratified data on the number of confirmed 
symptomatic cases (Figure 1A-B). We estimated the within-crew and within-passenger contact rates 
through calibration to the data, but assumed that the between group contact rate was a fixed factor of 
1/10th of the within-group rate, and explored the impact of this assumption in sensitivity analyses (see 
supplementary materials). We enabled the model to capture potential changes in contact behaviour 
between individuals by representing contact rates as sigmoid functions over time, reflecting reductions 
in contact. The dates and extent of the changes were determined solely through model calibration to 
the data. 
 
Model parameterisation 
We used data from the literature to inform the natural history of COVID-19, in particular for the duration 
of presymptomatic and symptomatic phases (Table 1).  
 
Model calibration 
The model was calibrated in a Bayesian framework. We fitted to the daily incidence of confirmed 
symptomatic cases with a known onset date, separately for passengers and crew, assuming a Poisson 
distribution in the likelihood. We simultaneously fitted to the daily number of confirmed pre- and 
asymptomatic infections for passengers and crew combined by using the number of tests administered 
per day and the prevalence of presymptomatic, asymptomatic and post-infection test-positive 
individuals, assuming a binomial distribution in the likelihood. We used uniform priors for the 
parameters to be estimated (see Table 1) and sampled the posterior of the model parameters using 
sequential Markov Chain Monte-Carlo (MCMC). A burn in phase during which the proposal distributions 
were adapted in both scale and shape to provide optimal sampling efficiency was discarded, leaving 
chains with one million iterations. The resultant MCMC chains were visually inspected for convergence 
(see supplementary materials for details).  
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TABLE 1: Model parameters and priors/values   
Parameter Description Prior/value Source/Notes 

 Overall contact rate (1/days) Estimated: Uniform(0,100)   

 Relative initial contact rate 
between crew/crew 

Fixed: 1  

 Relative initial contact rate 
between passengers/ 
passengers  

Estimated: Uniform(0,100)  

 Relative initial contact rate 
between passengers/crew 

Fixed relative to   

 Ratio:  Fixed: 0.1 Assumed. Varied in 
sensitivity analyses  

 Percentage reduction in all 
initial contact rates (%) 

Estimated: Uniform(0,100)  

 Rate of change of all contact 
rates (1/days) 
 

Fixed: 10 Assumed. Transitions 
completed over 
approximately one day 

 Time of transition for contacts 
between 
passengers/passengers and 
passengers/crew (days) 

Estimated: Uniform(0,32) Assumed to be equal to 
each other  

 
 

Time of transition for contacts 
between crew/crew (days) 

Estimated: Uniform(0,32)  

 Relative infectiousness of 
presymptomatic state 

Estimated: Uniform(0,1)  Relative to symptomatic 
state  

 Relative infectiousness of 
asymptomatic state 

Estimated: Uniform(0,1) Relative to symptomatic 
state  

 Proportion of infections that 
proceed to asymptomatic 
state 

Estimated: Uniform(0,1)  

 
Latent period (days) Fixed: 4.3 

 
Derived from (23) 

 

Mean duration in 
asymptomatic state (days) 

Fixed: 5.0  Assumed. Sum of mean 
durations in 
presymptomatic and 
symptomatic states.   
Varied in sensitivity 
analyses.   

 

Mean duration in 
presymptomatic state (days) 

Fixed: 2.1  Derived from (23)  

 

Mean duration in infectious 
symptomatic state (days). 
 

Fixed: 2.9 
 

From (24) Applicable 
only until quarantine 
starts on 5th Feb 
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Mean delay between onset of 
symptomatic disease and 
symptom based-testing and 
removal (days).  

Fixed: 1 Assumed.  Applicable 
only after quarantine 
starts on 5th Feb. 

 

Mean duration of test 
positivity following recovery 
(days) 

Fixed: 7 From (22) 

 Proportion of symptomatic 
cases with a reported onset 
date 

Fixed: 0.661 (199/314) From (13,21) 

 Rate of symptom-agnostic 
testing and removal (1/days)  

Fixed: Calculated   From (13) Calculated 
using the number of 
tests administered per 
day amongst individuals 
not reporting symptoms 
(see Supplementary 
Materials) 

 Total number of passengers 
on the ship as at start of 
quarantine on 5th Feb 

Fixed: 2,666 From (20) 

 Total number of crew on the 
ship as at start of quarantine 
on 5th Feb 

Fixed: 1,045 From (20) 

 
Model outputs 
Model outputs were calculated by randomly sampling 100,000 parameter values from the posterior 
distribution. Model trajectories were generated and compared to the data in Figure 1A-C to inspect 
model fit. The basic reproduction number was also calculated over time, as a measure of ongoing 
transmission. We estimated the proportion of infections that become asymptomatic and the relative 
infectiousness of asymptomatic infections using their respective marginal posterior parameter values. 
Finally, the contribution of asymptomatic infections to overall transmission, as well as the net 
reproduction number for presymptomatic passengers at the beginning of the outbreak (i.e. the typical 
number of infections generated by a single presymptomatic individual) were estimated, both overall and 
by specific ranges of relative infectiousness. We report the median and 95% equal-tailed posterior 
intervals (PI) throughout.  
 
Sensitivity analyses 
We recalibrated the model for a number of alternative scenarios to assess model sensitivity. Firstly, we 
assessed the impact of removing the asymptomatic phase (i.e. 100% of infections progressed to 
symptomatic disease). Secondly, we explored the impact of assuming different values for the relative 
mixing between crew and passengers as well as shorter and longer durations of asymptomatic 
infection. Thirdly, we explored the impact of assuming a different proportion of asymptomatic infections 
for crew and passengers based on their distinct median ages (36 years for crew, 69 years for 
passengers), using a fixed ratio for the two proportions taken from the results of a model fitted to 
epidemic data in six countries by Davies et al. (25) In addition, we explored a longer latent period given 
the relatively high age in our population. Finally, we recalibrated the model assuming the 35 confirmed 
pre/asymptomatic cases where a test date was not available were allocated to the last feasible day 
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(13th Feb) instead of proportionate to the overall number of tests over the period February 6-14th.  See 
supplementary materials for further details. (26) See supplementary materials for further details.  
 
All analyses were conducted using R version 3.5.0 (27). Bayesian calibration was performed in LibBi 
(28) using RBi (29) as an interface. Replication data and analyses scripts are available on GitHub at 
https://github.com/thimotei/covid19_asymptomatic_trans. 
 
Role of funding source 
The funder of the study had no role in study design, data collection, data analysis, data interpretation, 
or writing of the report. The corresponding author had full access to all the data in the study and had 
final responsibility for the decision to submit for publication.  

Results 
Calibration 
The model reflected the data well (Figure 1), including the differently timed peaks for confirmed 
symptomatic cases for passengers (Figure 1A) and crew (Figure 1B). In addition, the model matched 
the expected impact of quarantine of passengers on transmission from February 4th as illustrated by 
the drop in reproductive number, Figure 1E), followed by a later drop in transmission after February 
10th, which was driven by a change in contact pattern in crew. See supplementary materials for full 
MCMC calibration outputs.  
 
Figure 1: Data from Diamond Princess and model calibration  
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Figure shows data from Diamond Princess (points (A-D) and bars (F)) and results from model calibration. 
Red lines = median, shading = 95% posterior plus observational interval (A-C) and 95% posterior interval 
only (D-E). Two vertical lines show the date show date of first confirmed diagnosis (left) and start of 
quarantine measures (right). A-B) show confirmed symptomatic cases among crew  (A) and passengers (B) 
with a reported date of onset; C) shows confirmed pre- or asymptomatic individuals by test date; D) shows 
the prevalence of pre/asymptomatic individuals by test date. Marker + error bars show point estimate and 
95% confidence interval; E) shows the basic reproduction number over time for the ship as a whole, 
reflecting the drop in contact rates F) shows the number of tests administered irrespective of symptoms, by 
test date. 
 
Asymptomatic infections 
We estimated that 74% of infections proceeded asymptomatically (70-78%, 95% PI) (see Figure 2A). 
Our model estimated that in total 1,304 (1,198-1,416) individuals were infected, representing 35% (32-
38%) of the initial total population on the DP. Over half of these infections had not been detected at 
disembarkation on February 21st (53% (51-56%) Figure 2C), consisting of infected individuals who had 
recovered and became test negative before they were tested (37%, 34-40%), were yet to be tested 
(15%, 13-16%), or had recently been exposed and were not yet detectable at that point (1%, 1-3%). 
Nearly two-thirds of pre- and asymptomatic infections (67%, 66-68%) and 8% (6-9%) of symptomatic 
infections went undetected up until disembarkation (Figure 2C). 
 
The model was unable to identify the relative infectiousness of asymptomatic infections from the data, 
i.e. a uniform prior was effectively returned (see Figure 2B). Combined with the estimated number of 
asymptomatic infections and the non-linear relationship between relative infectiousness and 
contribution to transmission (see supplementary materials, figure S1), the estimated proportion of 
transmission due to asymptomatic infections of 69% has a wide confidence interval (20-85%), although 
the IQR is 56%-76% (Figure 2D). The relative infectiousness of presymptomatics was also not 
identifiable, however, in all scenarios, the remaining transmission was equally distributed between the 
presymptomatic (14%, 1-44%) and symptomatic (17%, 11-42%) individuals. 
 
Because of the non-identifiability of the relative infectiousness of asymptomatic infections we 
investigated marginal posterior estimates (Table 2). We find that low relative infectiousness of 
asymptomatic infections (0-25% compared to symptomatic individuals) would need to be compensated 
by a net reproduction number for individuals during their presymptomatic and symptomatic phase of 
15.5 - 29.1.  
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Figure 2: Proportion of asymptomatic infections, and contribution to transmission 

 
A) Prior (blue) and posterior (red) probability distribution for the proportion progressing to asymptomatic 
infections. B) Prior (blue) and posterior (red) probability distribution for the relative infectiousness of 
asymptomatic infections. C) number of asymptomatic infections and symptomatic cases detected (dark red) 
and not detected (light red) in the outbreak. Error bars indicate 95% posterior intervals). D) Posterior 
probability distribution for proportion of transmission that is from asymptomatic individuals. Dotted lines show 
median and interquartile range 
 
Sensitivity analyses 
Without an asymptomatic state the model was unable to reconstruct the dynamics of the outbreak 
(Supplementary Figure 5, Deviance Information Criterion (DIC) = 974 vs 329 for primary analysis). 
Adjusting the relative value for mixing between crew and passengers did not have a qualitative effect 
on the results (Supplementary Figures 9 and 13).  
 
When we assumed a fixed age-specific ratio for the proportion of infections that progress 
asymptomatically, the model was able to fit the data, although the number of correlated parameters 
was high. Overall results were similar to the main analysis, with a proportion asymptomatic of 42% 
(41-44%) and 89% (85-91%) for passengers and crew, respectively. The proportion of all 
transmission from asymptomatics was 69% (IQR = 59-74%). Relative infectiousness was again 
unidentifiable. See Supplementary Figure 28 for details.  
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A longer latent period provided a poorer fit to the data (DIC = 361) (Supplementary Figure 24) Adjusting 
the duration of the asymptomatic state to half or double the sum of the presymptomatic and 
symptomatic states made little qualitative difference to the results (Supplementary Figures 17 and 21), 
although the shorter asymptomatic period was a marginally poorer fit to the data (DIC = 338).  Finally, 
recalibrating the model assuming the 35 confirmed pre/asymptomatic cases where a test date was not 
available were allocated to the last feasible day (13th Feb) made no qualitative difference to our results 
(see Supplementary Figure 33).  
 
TABLE 2: Model outputs by relative infectiousness of asymptomatic individuals 

Range of relative 
infectiousness of 
asymptomatic 
individual  

Model output 

Transmission from 
asymptomatic 
individuals (%) 

Net reproduction 
number for 
presymptomatic 
passengers   

Basic reproduction 
number  

0-1% 0-3 22.7 - 29.1 6.7 - 7.6 

1-25% 7-58 15.5 - 25.5 7.0 - 8.8 

25-50% 44-75 11.1 - 17.6 8.0 - 9.6 

50-75% 60-82 8.7 - 13.6 8.7 - 10.2 

75-99% 68-86 7.2 - 11.4 9.3 - 10.8 

99-100% 72-87 6.7 - 10.2 9.5 - 10.9 

Relative infectiousness expressed as proportion compared to symptomatic individuals. All values 95% 
posterior ranges from model scenarios. Net reproduction number represents the typical number of infections 
generated by a single individual during the presymptomatic and symptomatic stages.  

Discussion  

Summary 
We find that in this well-documented outbreak in a closed population, 74% (70-78%) of infections 
proceeded asymptomatically, equaling a 1:3.8 (1:3.3-1:4.4) case-to-infection ratio. The majority of 
asymptomatic infections remained undetected, but may have contributed substantially to ongoing 
transmission. While the relative infectiousness of asymptomatic infections could not be identified, low 
infectiousness (e.g. 0-25% compared to symptomatic individuals) would have required a very high net 
reproduction number for individuals during their presymptomatic and symptomatic stages of (15.5 - 
29.1). 
 
Interpretation 
Our results are strongly informed by data, which show that when extensive symptom-agnostic testing 
was ramped up, substantial numbers of pre- or asymptomatic infections were identified. Given the clear 
suppression of transmission through quarantining, as indicated by the drop in incident symptomatic 
disease, this finding is most likely explained by a large proportion of undetected asymptomatic 
individuals. 
 



 

13 

The model and data were unable to identify a value for the relative infectiousness, although we showed 
how different ranges for this key parameter required specific trade-offs, as reflected in the basic 
reproduction number for infected individuals who will develop symptomatic disease. One can argue that 
a net reproduction number for presymptomatic passengers at the start of the outbreak of over 20 in this 
population, as required if asymptomatic individuals are effectively unable to transmit (range for relative 
infectiousness of 0-1%) is unlikely. Such high reproductive numbers are not usually seen, exceeding for 
example values found for norovirus outbreaks on cruise ships. (30) cruise  While SARS-CoV-2 has 
been shown to survive on surfaces, (31) but this does not seem to be the primary mode of 
transmission.  In combination with growing evidence around viral load in asymptomatic infections and 
their involvement in transmission chains (14), anecdotal evidence about transmission from 
asymptomatic individuals (19,32) including in closed populations, (33) it is reasonable to assume that 
asymptomatic infections play some role in ongoing SARS-CoV transmission. In our model, 83% of 
scenarios compatible with the data, asymptomatic infections were responsible for more than half of all 
transmission.  
 
Comparison to other studies 
Our estimated proportion of asymptomatic infections in this outbreak is higher than previous studies, 
which relied on diagnosed cases only. (13) As we have shown, a substantial number of infections were 
not detected, which would explain some of the difference. Other empirical studies have found usually 
lower values, while some found similar ranges. While underestimation in other estimates due to low 
(17) and imbalanced participation from individuals with and without symptoms (18) will be part of the 
explanation, there remains scope for unexplained variation from more complete samples. (14) In 
addition, it is possible that PCR-based testing has a lower sensitivity for asymptomatic infections, which 
would further increase the proportion of asymptomatic infections. (32)   
 
A sensitivity analysis showed that our results were robust to age-specific probabilities of progressing to 
asymptomatic infections, as well as other assumptions made by the model, and driven by trends in the 
data.   
 
Our estimated substantial contribution to transmission from asymptomatic infections confirms an 
hypothesis from Nishiura after analysing symptomatic cases occurring post-disembarkation. (21) Our 
initial reproduction number of 9.3 (7.4-10.6) reflects the high transmission environment on cruise ships, 
although lower that found in an earlier analysis by Rocklöv et al. (34)  
 
Our finding of similar contribution to transmission from presymptomatic and symptomatic individuals 
also matches findings by others. (5,11,12) In line with this, it is clear that having symptoms, or at least 
being aware of them, is not required in the transmission of SARS-CoV-2. (5,11,12,35,36) Although 
cough is often considered essential for transmission of respiratory infections (37), work in tuberculosis, 
influenza and other coronaviruses has shown that while a cough may increase spread, it is not a 
requirement. Transmission from breathing, talking and sneezing is also possible, as well as 
transmission from contaminated surfaces. (31,38–40)  
 
Limitations 
Additional data, in particular on the distribution of asymptomatic infections across crew and 
passengers, by age and shared quarantine environments would have benefited the model and 
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potentially enable us to estimate a range for the relative infectiousness of asymptomatic infections. 
Also, a serological survey of the population, and the date and testing history of individuals who 
developed symptoms post-disembarkation would have likely informed more precise model estimates. In 
addition, better evidence on performance of the test used, and the associated likelihood of false-
negative or false-positive results would help refine estimates. As more data becomes available, future 
model analyses of SARS-CoV dynamics in closed populations should further inform the key questions 
we have looked to address here.  
 
Conclusion 
Asymptomatic SARS-CoV-2 infections may contribute substantially to transmission. This is essential to 
consider for countries when assessing the potential effectiveness of ongoing control measures to 
contain COVID-19. 
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