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Abstract 

Background 

The health impact of COVID-19 may differ in African settings as compared to countries in Europe or China 

due to demographic, epidemiological, environmental and socio-economic factors. We evaluated strategies 

to reduce SARS-CoV-2 burden in African countries, so as to support decisions that balance minimising 

mortality, protecting health services and safeguarding livelihoods. 

 

Methods 

We used a Susceptible-Exposed-Infectious-Recovered mathematical model, stratified by age, to predict 

the evolution of COVID-19 epidemics in three countries representing a range of age distributions in Africa 

(from oldest to youngest average age: Mauritius, Nigeria and Niger), under various effectiveness 

assumptions for combinations of different non-pharmaceutical interventions: self-isolation of symptomatic 

people, physical distancing, and ‘shielding’ (physical isolation) of the high-risk population. We adapted 

model parameters to better represent uncertainty about what might be expected in African populations, in 

particular by shifting the distribution of severity risk towards younger ages and increasing the case-fatality 

ratio. 

 

Results 

We predicted median clinical attack rates over the first 12 months of 17% (Niger) to 39% (Mauritius), 

peaking at 2-4 months, if epidemics were unmitigated. Self-isolation while symptomatic had a maximum 

impact of about 30% on reducing severe cases, while the impact of physical distancing varied widely 

depending on percent contact reduction and R0. The effect of shielding high-risk people, e.g. by rehousing 

them in physical isolation, was sensitive mainly to residual contact with low-risk people, and to a lesser 

extent to contact among shielded individuals. Response strategies incorporating self-isolation of 

symptomatic individuals, moderate physical distancing and high uptake of shielding reduced predicted 

peak bed demand by 46% to 54% and mortality by 60% to 75%. Lockdowns delayed epidemics by about 

3 months. Estimates were sensitive to differences in age-specific social mixing patterns, as published in 

the literature. 

 

Discussion 

In African settings, as elsewhere, current evidence suggests large COVID-19 epidemics are expected. 

However, African countries have fewer means to suppress transmission and manage cases. We found 

that self-isolation of symptomatic persons and general physical distancing are unlikely to avert very large 

epidemics, unless distancing takes the form of stringent lockdown measures. However, both interventions 

help to mitigate the epidemic. Shielding of high-risk individuals can reduce health service demand and, 

even more markedly, mortality if it features high uptake and low contact of shielded and unshielded people, 

with no increase in contact among shielded people. Strategies combining self-isolation, moderate physical 

distancing and shielding will probably achieve substantial reductions in mortality in African countries. 

Temporary lockdowns, where socioeconomically acceptable, can help gain crucial time for planning and 

expanding health service capacity. 
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Introduction 

The COVID-19 pandemic has not only led to increased mortality, but has also resulted in widespread 

socio-economic disruption and is severely testing affected countries’ health service capacity1–3. However, 

to date, its effects have mainly been observed in countries with relatively well-resourced health systems 

and the financial means to support economies during ‘lock-down’ periods. At the time of writing, only two 

African countries, Lesotho and Comoros, had not reported any confirmed SARS-CoV-2 infections2. In 

these and other low-income settings, two factors (younger age distributions and, potentially, warmer 

temperatures4,5) may help to attenuate the pandemic’s severity. However, other factors may plausibly 

combine to worsen its impact: these include demography (larger household sizes and more 

intergenerational mixing within households), environmental conditions (overcrowded urban settlements, 

inadequate water and sanitation), pre-existing disease burden (higher prevalence of undiagnosed or 

unmanaged non-communicable diseases, tuberculosis and, if confirmed to be risk factors for COVID-19 

severity, HIV and undernutrition), and, critically, a very low baseline of and access to hospitalisation 

capacity, particularly intensive and sub-intensive care6–10. In several African countries, armed conflict, food 

insecurity and resulting forced displacement further worsen societal resilience11–16. 

Options to manage COVID-19 in Africa may be limited. Sufficiently scaling up case management may 

simply be unfeasible for many countries as the requirements, particularly at the epidemic’s peak, may be 

many-fold greater than the baseline capacity. Even in scenarios where intense suppression measures are 

successfully implemented, it is plausible that the availability of beds, clinicians, ventilators and personal 

protective equipment would be critical limiting factors17,18. Suppressing the epidemic through ‘lock-down’ 

policies may delay transmission in the short-term, but their economic viability beyond a timeframe of weeks 

is questionable unless large economic rescue packages are made available by global financing actors and 

are concretely accessible to populations: indeed, lock-down measures and even less intense distancing 

restrictions could exacerbate poverty and undernutrition, compromise educational attainment and undo 

improvements in access to health interventions achieved over the past decades19,20. 

To help inform COVID-19 response strategies for African settings, we undertook a mathematical modelling 

study. We explored the possible effect on hospitalisation requirements and mortality of interventions 

considered to date in high-income settings, including self-isolation of symptomatic persons, general 

distancing (reduction of overall contacts) outside the household and more intensive lock-down measures. 

We also quantified the potential of an alternative option we refer to as ‘shielding’, whereby people at high 

risk of COVID-19 severe disease are specifically protected through a variety of community-led 

arrangements, such as neighbourhood-level house swaps, to create ‘green zones’ wherein high-risk 

residents are physically isolated for an extended period, but supported to live safely and with dignity: 

epidemiologically, this option seeks to reduce transmission within the high-risk groups that may otherwise 

contribute a large amount of hospitalisation and mortality. 

 

Methods 

Model structure 

We adapted a previously developed discrete-time Susceptible-Exposed-Infectious-Recovered (SEIR) 

compartmental model, stratified by age group and disease status (asymptomatic, pre-symptomatic, and 

symptomatic)21. Detail is provided in the Supplementary Material. In brief, the model progresses a 

population through time based on assumed age-dependent contact of susceptible with infectious 

individuals. After their infectious period, all individuals are assumed to be immune until the end of the 

simulation (Recovered compartment). The model is stratified into 16 age groups, with people under 75 
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years stratified into 5-year age-bands and one additional stratum for 75+ years. The model population is 

closed, with no births or ageing, and deaths remain in the Recovered compartment. 

 

Transmissibility assumptions 

We adopted epidemiological parameter values (serial interval, infectiousness by symptom stage, and 

incubation, infectiousness and symptomatic periods) used by Davies et al.21 (see Supplementary Material). 

We assumed an age-dependent probability of developing clinical symptoms.22 Asymptomatic individuals 

were assumed to be half as infectious as symptomatic individuals. Clinical progression of symptomatic 

cases to severe disease is assumed not to affect their infectiousness. 

To represent the full range of age structures in Africa, we ranked countries according to their mean age, 

and selected countries with the youngest (Niger), oldest (Mauritius), and median (Nigeria) mean age as 

case studies. Key country-specific data inputs were age-specific population sizes, sourced from United 

Nations World Population Prospects estimates23 and age- and setting-specific social contact matrices. As 

no empirical data on age-specific social mixing patterns were available for these three countries, we used 

previously published synthetic contact matrices, namely projections of a European multi-country contact 

pattern study adjusted to individual countries based on national demographic and socio-economic 

characteristics24. Contact data were stratified according to whether the contact was within or outside the 

household. 

To account for uncertainty regarding the transmissibility of SARS-CoV-2 in Africa, we implemented the 

model stochastically and sampled the basic reproduction number 𝑅0, from a normal distribution with mean 

2.6 and standard deviation of 0.525. We implemented different 𝑅0 estimates by scaling the probability of 

transmission per contact with an infectious person in accordance with the ratio between the target 𝑅0 and 

the dominant eigenvalue of the Next-Generation Matrix (Supplementary Material). 

  

Case severity assumptions 

In high-income countries, the severity of SARS-CoV-2 infections has been shown to increase with age and 

prevalence of various comorbidities26–28. In practice, individual comorbidities co-occur (e.g. diabetes and 

hypertension), and co- and multimorbidity increase with age10. To simplify assumptions, we took age as a 

single predictor of severity, applying current evidence on its association with risk of symptomatic disease, 

severe disease (i.e. requiring hospitalisation), and critical disease (need for intensive care). 

However, in African and low-income countries, an average person’s underlying vulnerability may 

correspond to that of an individual with greater chronological age in a high-income setting due to life-

course effects including malnutrition, infections and often unmanaged non-communicable diseases. It is 

not yet known how this might affect COVID-19 severity29, although Global Burden of Disease data show 

strong associations between income level and the severity of other respiratory infections, particularly in 

younger age groups.29 To account for this, we shifted age-specific severity risks (probability of becoming 

a severe case and critical case) towards younger age by 10 years. To explore the effect of increased 

vulnerability and lack of access to healthcare, we also multiplied current estimates of age-specific case-

fatality ratios (CFR; from China and the Diamond Princess cruise ship outbreak) of severe, and critical 

cases by a factor of 1.5 (used for our main analysis; see Supplementary Material). We did not make 

assumptions about the proportion of cases that would receive appropriate treatment: the CFR multiplier 

factor attempts to capture worse prognosis under limited or no treatment. 

  

https://paperpile.com/c/8MHCKZ/TECx


* THIS STUDY HAS NOT YET BEEN PEER-REVIEWED * 

Van Zandvoort et al. (2020) COVID-19 response strategies in Africa Page 5 of 39 

Response interventions  

The range of response interventions explored, alone or in combination, are outlined in Table 1. We 

assumed these would be applied at the country level. 

Self-isolation was implemented as a reduction in transmissibility of infected people during their 

symptomatic period, equivalent to a reduction in their contacts. We did not account for additional 

quarantine of other members in the same household. 

General physical distancing was implemented as a reduction in all contacts outside the household. We 

assumed no change in transmission within the household. 

Shielding was implemented by stratifying the population into one shielded and one unshielded 

compartment. In the presence of shielding, mixing between the shielded and unshielded population would 

reduce by some degree, while mixing within the shielded population may remain the same, decrease (to 

zero if people are shielded individually) or increase if shielded people are resettled in overcrowded 

housing. While in the intervention’s practical application people should be shielded on the basis of age 

and/or known comorbidities, for this model we assumed more simplistically that varying proportions of the 

population aged 60 and above would be shielded. 

 

Table 1. Summary of response interventions explored in the study. 

Intervention Description Model implementation Range explored 

Self-isolation of 
symptomatic 
people 

People with symptoms of 
possible COVID-19 isolate 
themselves in their home until 
symptom-free 

Relative reduction in all 
social contacts among 
symptomatic people only, 
from the time they become 
symptomatic 

0-100% relative 
reduction in 
transmission 

General physical 
distancing 
(including reduction 
of probability of 
transmission per 
contact) 

Behaviour change, promotion 
of handwashing, varying 
degrees of curtailment of 
transport, social and work 
gatherings 

Relative reduction in 
contacts outside of the 
household 

0-100% relative 
reduction in 
transmission 
(we assumed that 
‘lockdown’ measures 
would correspond to 
an 80% reduction)24 

Shielding of high-
risk groups 

Communities identify people 
who meet high-risk criteria for 
poor COVID-19 clinical 
outcomes and resettle them in 
a variety of shielded 
arrangements (either 
individual, e.g. a dedicated 
room within a house, or groups 
of various sizes in vacated / 
swapped houses, huts or other 
shelters). Contact is thereafter 
limited. 
 
Within these shielded ‘green 
zones’, residents also adopt 
distancing measures if they 
are living together. 

A proportion of people 
aged ≥ 60 years old is 
‘shielded’ 
 
Contact between shielded 
people and unshielded is 
reduced 
  
 
Contact among shielded 
people varies depending 
on the arrangement 
chosen 

60-100% of high-risk 
people are shielded 
 
 
60-100% relative 
reduction in contact 
with non-shielded 
people 
  
0-400% relative 
change in social 
contact among 
shielded people (0% 
represents individual 
shielding 
arrangements; 400% 
represents what might 
happen if people are 
grouped within 
overcrowded shielded 
housing) 

  

https://paperpile.com/c/8MHCKZ/7YZL
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Analysis outcomes 

We compared outcomes under different intervention values and strategies (combinations of interventions) 

for each unique combination of sampled 𝑅0 and model seeds. We present median, 50% and 95% quantiles 

of differences in outcomes across all combinations, and show results stratified by 𝑅0 in the Supplementary 

Material. 

For the impact of individual interventions, we considered severe cases as our primary outcome. For the 

impact of different strategies, we observed the total number of symptomatic cases, severe cases (those 

who require hospitalisation), critical cases (those who require intensive care, ICU), and deaths, and 

present the expected time until peak of the epidemic, including peak bed demand that would be required. 

We only show estimates for the first 12 months after introduction of the first case, as the evolution of the 

epidemic beyond this period is subject to considerable unknowns (e.g. availability of vaccines or 

therapeutics; virus mutation, persistence of natural immunity). 

 

Ethics 

The study used only publicly available aggregate data and was thus not subject to ethical review. 

 

Results 

Epidemic trajectories in the absence of control 

Simulations of an unmitigated epidemic in Niger resulted in a median of 4.1 million clinical cases during 

the first 12 months following introduction of the first case, 48.7 million in Nigeria and 490 000 in Mauritius 

(Table 2), with the most probable epidemic peaks after 3, 4 and 2 months respectively (Figure 1). We 

estimate some 39,000 deaths due to COVID-19 in Niger, 605,000 in Nigeria and 17,000 in Mauritius would 

occur over the same period, not accounting for indirect excess mortality due to health service or socio-

economic disruptions. However, there is considerable uncertainty associated with these median estimates 

of cases and deaths (Table 2), which are mainly the result of different 𝑅0 values considered. Large 

epidemics that peak early occur in scenarios where 𝑅0 is high, whereas epidemics with lower 𝑅0 will have 

a lower total and peak epidemic size, and will peak later (Supplemental Figure S9). 

 

Effect of individual interventions 

Self-isolation of symptomatic individuals 

We estimate a reduction in severe cases during the first 12 months of the epidemic if symptomatic cases 

self-isolate throughout this period with varying levels of adherence (Figure 2A). Increasing adherence has 

a nearly linear relationship with the incidence of severe cases, but the maximum median impact is a 30% 

reduction (under an extreme scenario of 100% reduction in all contacts while having clinical symptoms). 

Although the probability of being a (symptomatic) case is modelled age-dependent, the impact of self-

isolation was similar in all countries despite their different demographic distributions. Uncertainty intervals 

for Nigeria and Mauritius were wider, but mainly reflected differences in 𝑅0 between simulations 

(Supplemental Figure S10). In simulations where a low 𝑅0 was used, there was potential for a larger 

reduction in severe cases. The impact of 𝑅0 variability is smaller in Niger, where a higher proportion of 
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transmission is due to subclinical infections due to its lower average age and the age-dependency of 

becoming a symptomatic case, as reflected by the clinical attack rates in Table 2. 

 

Figure 1: Projected incidence of symptomatic COVID-19 cases over time for simulations of an 

unmitigated epidemic, by country. The green line shows the run that was closest to the median total 

number of cases across all model runs. Grey lines show individual stochastic model runs, where 𝑅0 in 

each run was sampled from a normal distribution with mean 2.6 and standard deviation 0.5. Stratification 

of these runs by 𝑅0 are shown in the Supplementary Material. 

 

Table 2: Projected impact of unmitigated COVID-19 epidemics during the first 12 months following 

introduction of cases, by country. All values represent the median and 95% lower and upper quantiles 

from 500 model runs. The symptomatic attack rate is calculated as the total number of symptomatic cases 

divided by the population. We show the months until the epidemic peak (defined as the day with the highest 

number of new cases) and present the peak daily number of deaths and hospital bed demand. 

Key outcome Niger Nigeria Mauritius 

Population size 24,100,000 202,900,000 1,300,000 

Population aged 60+ 4% 5% 18% 

Symptomatic cases 4,100,000 
(1,800,000 to 5,200,000) 

48,700,000 
(27,800,000 to 56,500,000) 

490,000 
(314,000 to 546,000) 

Severe cases 106,000 
(39,000 to 154,000) 

1,600,000 
(734,000 to 2,100,000) 

44,000 
(24,000 to 53,000) 

Critical cases 45,000 
(17,000 to 66,000) 

699,000 
(314,000 to 908,000) 

19,000 
(10,000 to 23,000) 

Symptomatic attack 
rate 

17% (8 to 22) 24% (14 to 27) 39% (25 to 43) 

Deaths 39,000 
(14,000 to 56,000) 

605,000 
(271,000 to 790,000) 

17,000 
(9,000 to 21,000) 

Deaths per 1000 
person-years 

1.6 (0.6 to 2.3) 2.9 (1.3 to 3.8) 13.2 (7.1 to 16.2) 

Epidemic peak 
(month) 

3 (3 to 7) 4 (3 to 8) 2 (2 to 5) 

Peak deaths 1500  
(300 to 2800) 

25,600  
(5700 to 43,200) 

800  
(200 to 1200) 

Peak demand for 
non-ICU beds 

23,200  
(4400 to 43,200) 

391,000  
(85,800 to 662,900) 

11,500  
(3000 to 18,000) 

Peak demand for 
ICU beds 

12,200  
(2300 to 22,500) 

204,500  
(45,300 to 343,900) 

6,000  
(1600 to 9300) 
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Population-wide physical distancing 

Figure 2B shows the estimated impact of population-wide (i.e. not targeting any group) physical distancing, 

whereby all individuals reduce their contacts outside of the household to a certain degree, while contacts 

within the household remain unchanged. Across all three countries, reducing all contacts outside the 

household by an extreme of 100%, if sustained over the entire 12 months period, could result in a median 

reduction in severe cases by over 90%. However, this would largely delay rather than prevent severe 

cases, as insufficient levels of herd-immunity would develop, leading to a second wave of cases following 

the relaxation of measures. Relatively high reductions in contacts are needed for large impacts. Patterns 

were largely consistent across countries. Stratified results by 𝑅0 are shown in Supplemental Figure S10. 

Impact can vary substantially between settings with low and high 𝑅0, reflected by the wide intervals here. 

For instance, when reducing 40% of contacts outside of the household, reduction in severe cases in the 

first 12 months of the epidemic could be as low as 18% in scenarios with an 𝑅0 above 3, while it could be 

as high as 71% in scenarios with an 𝑅0 below 2. 

 

Figure 2: Estimated reduction in severe cases following A) self-isolation of symptomatic 

individuals and B) population-wide physical distancing. Medians (circles), 95% (light-green area) 

and 50% (dark green area) quantiles for the percentage reduction in severe cases during the first 12 

months of the epidemic for different levels of compliance, for each country, across 500 model runs. 

Quantiles are calculated across all simulations representing different stochastic runs and using different 

𝑅0 values. Estimates for reductions where no point is available are interpolated. 
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Shielding of high-risk individuals 

Shielding of high-risk individuals aims to reduce the number of severe cases among high-risk groups, and 

thereby in the overall population, while having a smaller effect on transmission in the population and 

thereby on the total number of cases. Figure 3 shows the reduction in the number of severe cases for 

different reductions in contacts between shielded and unshielded individuals, percentages of individuals 

shielded and changes in contact intensity within the shielded group, relative to baseline. 

Figure 3: Estimated reduction in severe cases when shielding high-risk individuals, by country. 

Medians (dashed lines) and 95% quantiles (shaded areas) of the percentage reduction in severe cases 

during the first 12 months of the epidemic for different levels of reduction in contacts between shielded and 

unshielded people (x axis), different level of contacts among shielded people (facet rows), and for different 

percentages of people ≥ 60 years old shielded (see legend), for each country, across 500 model runs.  

 

Across all countries, reductions in severe cases increased with the percentage ≥ 60 years old shielded, 

but the reduction in contacts between shielded and unshielded individuals was more influential, with ≥ 60% 

reduction in contacts required to achieve ≥ 10% reduction in severe cases. The degree of contact among 

shielded individuals appeared to be of lesser importance for Niger and Nigeria, with similar effect sizes 

regardless of whether the shielded individuals reduce their contact with one another to zero, remain at 

baseline, or quadruple it. This pattern does not hold for Mauritius, where a marked drop in the effect is 



* THIS STUDY HAS NOT YET BEEN PEER-REVIEWED * 

Van Zandvoort et al. (2020) COVID-19 response strategies in Africa Page 10 of 39 

seen when contact among shielded individuals quadruples: this is reflective of Mauritius having a larger 

elderly population, thereby contributing more to the overall proportion of severe cases in the population. 

As shielding does not significantly affect transmission dynamics, estimates are similar across scenarios 

with low- and high R0 (Supplemental Figure S11). However, prediction intervals are wider in Mauritius, 

where a high proportion of the total population is shielded (8 - 14%). 

 

Impact of potential control strategies 

Without lockdowns 

We explored the impact of five different strategies and compared their impact to the unmitigated epidemic 

over the first 12 months after introduction of the first case. We assumed that self-isolation of symptomatic 

individuals, featuring 50% reduction in transmission, would be part of any strategy. We then added (i) 20% 

or (ii) 50% reduction in contacts outside the household through physical distancing, (iii) shielding of 80% 

of individuals aged 60 and older, with a reduction of 80% in contacts between the shielded and unshielded 

population and no change in contacts within the shielded population, (iv) a combination of shielding and 

20% physical distancing, and (v) a combination of shielding with 50% physical distancing. Interventions 

are implemented when daily incidence reaches 1 case per 10,000 people and are assumed to be 

maintained for the remainder of the year. 

Figure 4 shows the evolution of deaths depending on the strategy chosen. Evolution of bed demand under 

each scenario is given in Supplementary Figure S2. Table 3 shows the corresponding attack rate, total 

number of cases, severe cases, and critical cases, time of epidemic peak, and peak bed demand for 

severe and critical cases. All strategies yielded substantial but partial reductions in key health outcomes. 

Under all strategies, we estimate a high bed capacity needed in the three countries modelled. 

Whereas reducing transmission outside of the household by 20% would be more effective in reducing the 

total number of clinical cases than shielding, shielding could be as effective in reducing the total bed 

demand at the peak of the epidemic and total number of deaths as general physical distancing. 

More substantial levels of physical distancing (50%) would lead to far greater effects in the first 12 months 

of the epidemic. However, this strategy, unlike shielding, reduces overall transmission and thus does not 

necessarily result in a resolution of the epidemic through herd immunity during this period; instead, this 

intervention would need to be sustained into the second year until herd-immunity is reached through either 

natural immunity or a vaccine, assuming immunity is long lived. Supplemental Figure S3 illustrates this 

phenomenon: when all interventions except self-isolation are lifted after 12 months, scenarios where 

physical distancing has reduced transmission outside the household by 50% in the first year may feature 

a second, albeit smaller peak during the second year if no further mitigation measures are taken; this 

further peak is absent under the other strategies. However, predictions beyond the first year may vary 

considerably depending on the longevity of SARS-CoV-2 immunity and availability of potential 

pharmaceutical interventions, and should be interpreted with caution.4  

A combination of shielding and physical distancing would be most effective in reducing overall outcomes. 

Table 4 highlights the relative reduction in hospital bed demand for severe cases at the epidemic peak and 

total number of deaths in the first 12 months of the epidemic, under each scenario. Notably, shielding 80% 

of the high-risk population and reducing contact between the shielded and unshielded populations by 80% 

could be as effective in reducing severe outcomes as general physical distancing reducing transmission 

with 20%. 
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In combination with lockdowns 

We also explored the impact a temporary lockdown could have on these same strategies. We assumed a 

two-month lockdown, triggered at incidence 1 per 10,000 person-days, during which, in addition to self-

isolation as above, all contacts outside the household were reduced by 80%; the remainder of the year 

consisted of the five alternative strategies above. 

Supplemental Figure S4 shows bed demand and deaths over time while Supplemental Table S3 shows 

key outcomes in the first 12 months under this lockdown scenario. A lockdown would delay, but not 

prevent, the epidemic peak in all countries (from 3 to 6-7 months in Niger, from 4 to 7-8 months in Nigeria, 

and from 2 to 5-6 months in Mauritius). However, it would not substantially affect total epidemic sizes or 

peak bed demand, compared to strategies without lockdowns. 

 

Removing self-isolation of symptomatic individuals 

As a sensitivity analysis, we explored how the impact of different scenarios would compare in the absence 

of self-isolation. Supplemental Figure S5 shows bed demand and deaths over time for each modelled 

strategy in the absence of self-isolation, while Supplemental Table S4 shows associated key outcomes. 

Removing self-isolation substantially increased the number of cases and deaths in all scenarios. However, 

this relative difference was larger for scenarios with physical distancing only (11-15% higher mortality) 

than for scenarios with shielding only (6-10%). The resulting increased transmission brought the epidemic 

peak forward in all countries.
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Figure 4: Estimated daily number of deaths during the first 12 months of the epidemic, under different strategies. Thick solid lines 

show the run which was closest to the median total number of deaths after 12 months across all model runs. Dashed lines are runs closest 

to the lower and upper 95% quantiles, while dotted lines are runs closest to the lower and upper 50% quantiles of total number of deaths, 

calculated over 500 model runs. Except for the unmitigated scenario, all scenarios assume 50% self-isolation during the symptomatic period 

of all clinical cases throughout the entire course of the epidemic. Other interventions start when daily incidence of symptomatic cases reaches 

1 case per 10 000 people. Distancing strategies assume 20% or 50% reduction in all contacts outside of the household. Shielding strategies 

assume shielding of 80% of the population aged 60+, irrespective of underlying comorbidities, with an 80% reduction in contacts between the 

shielded and unshielded population, and no change in contacts within the shielded population. Estimates for bed demand over time are given 

in Supplementary Figure S2. 
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Table 3: Key outcomes during the first 12 months of the epidemic under different model strategies, by country. Number of clinical, 

severe, and critical cases and deaths per 10,000 people predicted during the first 12 months of the epidemic, and number of deaths, non-

ICU and ICU bed demand at epidemic peak in Niger, Nigeria, and Mauritius. Symptomatic attack rate is calculated as number of symptomatic 

cases over the total population size. We show estimates under different modelled strategies: (i) physical distancing with 20% reduction and 

(ii) 50% reduction in contacts outside of the household; (iii) shielding of 80% of the population over 60, with an 80% reduction in contacts 

between the shielded and unshielded population and no change in contacts within the shielded population; (iv) combined shielding and 

physical distancing with 20% and (v) 50% reduction in contacts outside of the household. In all modelled strategies, infected individuals 

decrease their contacts during their symptomatic infectious period by 50%. 

 

Niger 

Key outcome Unmitigated 20% distancing 50% distancing 80% shielding 
80% shielding + 
20% distancing 

80% shielding + 
50% distancing 

Symptomatic cases 4,101,000 
(1,873,000 - 

5,240,000) 

2,944,000 
(871,000 - 
4,253,000) 

1,608,000 
(221,000 - 
3,035,000) 

3,494,000 
(1,469,000 - 

4,654,000) 

2,864,000 
(853,000 - 
4,128,000) 

1,585,000 
(194,000 - 
2,952,000) 

Severe cases 106,000 
(39,000 - 154,000) 

72,000 
(18,000 - 118,000) 

40,000 
(5,000 - 84,000) 

64,000 
(22,000 - 96,000) 

52,000 
(13,000 - 83,000) 

29,000 
(3,000 - 59,000) 

Critical cases 45,000 
(17,000 - 66,000) 

31,000 
(8,000 - 50,000) 

17,000 
(2,000 - 36,000) 

27,000 
(10,000 - 41,000) 

22,000 
(6,000 - 36,000) 

12,000 
(1,000 - 25,000) 

Deaths 39,000 
(14,000 - 56,000) 

26,000 
(6,000 - 43,000) 

15,000 
(2,000 - 31,000) 

23,000 
(8,000 - 34,000) 

18,000 
(5,000 - 30,000) 

10,000 
(1,000 - 21,000) 

Symptomatic attack rate 16.9% 
(7.7 - 21.6) 

12.2% 
(3.6 - 17.6) 

6.6% 
(0.9 - 12.5) 

14.4% 
(6.1 - 19.2) 

11.8% 
(3.5 - 17.1) 

6.5% 
(0.8 - 12.2) 

Epidemic peak (months) 3 (3 - 7) 4 (3 - 7) 4 (3 - 6) 4 (3 - 7) 4 (3 - 7) 4 (3 - 5) 

Peak deaths 1,500 
(300 - 2,800) 

800 
(100 - 1,900) 

300 
(0 - 1,000) 

900 
(100 - 1,600) 

600 
(100 - 1,300) 

200 
(0 - 700) 

Peak non-ICU beds 
needed 

23,200 
(4,400 - 43,200) 

13,000 
(1,300 - 28,600) 

4,200 
(500 - 14,600) 

13,500 
(2,300 - 25,900) 

9,200 
(900 - 20,100) 

3,100 
(400 - 10,200) 

Peak ICU beds needed 12,200 
(2,300 - 22,500) 

6,800 
(700 - 15,000) 

2,200 
(200 - 7,700) 

7,100 
(1,200 - 13,500) 

4,800 
(500 - 10,500) 

1,600 
(200 - 5,400) 

 

Nigeria 

Key outcome Unmitigated 20% distancing 50% distancing 80% shielding 
80% shielding + 
20% distancing 

80% shielding + 
50% distancing 

Symptomatic cases 48,728,000 
(27,753,000 - 

56,537,000) 

37,813,000 
(2,755,000 - 
49,473,000) 

21,329,000 
(196,000 - 

38,414,000) 

42,443,000 
(18,421,000 - 

51,376,000) 

36,389,000 
(3,918,000 - 
47,517,000) 

20,444,000 
(240,000 - 

36,792,000) 

Severe cases 1,631,000 
(734,000 - 
2,119,000) 

1,188,000 
(63,000 - 

1,753,000) 

665,000 
(5,000 - 

1,347,000) 

958,000 
(318,000 - 
1,320,000) 

797,000 
(63,000 - 

1,186,000) 

430,000 
(5,000 - 883,000) 
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Nigeria 

Key outcome Unmitigated 20% distancing 50% distancing 80% shielding 
80% shielding + 
20% distancing 

80% shielding + 
50% distancing 

Critical cases 699,000 
(314,000 - 908,000) 

509,000 
(27,000 - 751,000) 

285,000 
(2,000 - 577,000) 

411,000 
(136,000 - 566,000) 

341,000 
(27,000 - 508,000) 

184,000 
(2,000 - 379,000) 

Deaths 605,000 
(271,000 - 790,000) 

441,000 
(23,000 - 653,000) 

249,000 
(2,000 - 504,000) 

343,000 
(113,000 - 475,000) 

285,000 
(22,000 - 427,000) 

155,000 
(2,000 - 319,000) 

Symptomatic attack 
rate 

23.6% 
(13.5 - 27.4) 

18.3% 
(1.3 - 24) 

10.3% 
(0.1 - 18.6) 

20.6% 
(8.9 - 24.9) 

17.7% 
(1.9 - 23.1) 

9.9% 
(0.1 - 17.8) 

Epidemic peak 
(months) 

4 (3 - 8) 5 (3 - 11) 6 (4 - 9) 4 (3 - 10) 5 (3 - 11) 5 (4 - 9) 

Peak deaths 25,600 
(5,700 - 43,200) 

13,700 
(600 - 29,100) 

3,700 
(0 - 15,000) 

13,200 
(2,100 - 24,200) 

8,800 
(500 - 19,000) 

2,300 
(0 - 9,500) 

Peak non-ICU beds 
needed 

391,000 
(85,800 - 662,900) 

207,300 
(9,100 - 443,200) 

55,700  
600 - 226,400) 

205,800 
(32,200 - 379,100) 

137,400 
(7,000 - 295,900) 

35,700 
(600 - 147,100) 

Peak ICU beds 
needed 

204,500 
(45,300 - 343,900) 

109,000 
(4,800 - 231,500) 

29,500 
(300 - 119,100) 

107,900 
(17,000 - 197,200) 

72,300 
(3,700 - 154,600) 

18,900 
(300 - 77,400) 

 

Mauritius 

Key outcome Unmitigated 20% distancing 50% distancing 80% shielding 
80% shielding + 
20% distancing 

80% shielding + 
50% distancing 

Symptomatic cases 490,000 
(314,000 - 546,000) 

398,000 
(99,000 - 494,000) 

260,000 
(8,000 - 415,000) 

399,000 
(199,000 - 462,000) 

354,000 
(87,000 - 439,000) 

229,000 
(9,000 - 366,000) 

Severe cases 44,000 
(24,000 - 53,000) 

33,000 
(7,000 - 45,000) 

21,000 
(1,000 - 37,000) 

24,000 
(10,000 - 31,000) 

21,000 
(4,000 - 29,000) 

13,000 
(1,000 - 23,000) 

Critical cases 19,000 
(10,000 - 23,000) 

14,000 
(3,000 - 19,000) 

9,000 
(0 - 16,000) 

10,000 
(4,000 - 13,000) 

9,000 
(2,000 - 12,000) 

6,000 
(0 - 10,000) 

Deaths 17,000 
(9,000 - 21,000) 

13,000 
(3,000 - 17,000) 

8,000 
(0 - 14,000) 

9,000 
(4,000 - 12,000) 

8,000 
(2,000 - 11,000) 

5,000 
(0 - 8,000) 

Symptomatic attack rate 38.5% 
(24.7 - 42.9) 

31.3% 
(7.8 - 38.8) 

20.4% 
(0.6 - 32.6) 

31.4% 
(15.6 - 36.3) 

27.8% 
(6.8 - 34.5) 

18% 
(0.7 - 28.8) 

Epidemic peak (months) 2 (2 - 5) 3 (2 - 7) 4 (2 - 5) 3 (2 - 6) 3 (2 - 6) 3 (2 - 5) 

Peak deaths 800 
(200 - 1,200) 

400 
(0 - 800) 

100 
(0 - 500) 

300 
(100 - 600) 

200 
(0 - 500) 

100 
(0 - 300) 

Peak non-ICU beds needed 11,500 
(3,000 - 18,000) 

6,000 
(300 - 12,100) 

2,100 
(100 - 6,900) 

5,200 
(800 - 9,000) 

3,600 
(200 - 7,300) 

1,200 
(100 - 4,100) 

Peak ICU beds needed 6,000 
(1,600 - 9,300) 

3,200 
(200 - 6,300) 

1,100 
(0 - 3,600) 

2,700 
(400 - 4,700) 

1,900 
(100 - 3,800) 

600 
(0 - 2,200) 
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Table 4: Relative reductions in two key outcomes during the first 12 months of the epidemic under 

different strategies. Table shows the relative reduction in the number of beds needed at the epidemic peak, 

and the total number of deaths in the first 12 months of the epidemic, compared to an unmitigated epidemic, 

under each strategy. 

Key outcome Country 
20% 

distancing 
50% 

distancing 
80% shielding 

80% shielding 
+ 20% 

distancing 

80% shielding 
+ 50% 

distancing 

Total deaths in 
first 12 months 

Niger 33% (23 - 57) 62% (45 - 86) 41% (39 - 43) 54% (46 - 64) 74% (63 - 93) 

Nigeria 27% (17 - 92) 59% (36 - 99) 43% (40 - 58) 53% (46 - 92) 74% (60 - 99) 

Mauritius 24% (19 - 67) 53% (33 - 100) 47% (43 - 56) 53% (48 - 78) 71% (62 - 100) 

Hospital bed 
demand at 
epidemic peak 

Niger 44% (34 - 70) 82% (66 - 89) 42% (40 - 48) 60% (53 - 80) 87% (76 - 91) 

Nigeria 47% (33 - 89) 86% (66 - 99) 47% (43 - 62) 65% (55 - 92) 91% (78 - 99) 

Mauritius 48% (33 - 90) 82% (62 - 91) 55% (50 - 73) 69% (59 - 93) 90% (77 - 97) 

 

 

Empirical contact matrices 

To test the sensitivity of our results to this assumption, we replicated our analysis in three African countries for 

which empirical contact data are available: Kenya (rural Kilifi District), Uganda (rural to semi-urban Mbarara 

District), and Zimbabwe (the city of Bulawayo)30–32. To account for sampling error in these contact studies, we 

generated bootstrapped matrices for each of 500 model runs. Results are shown in the Supplementary 

Material. The impact of self-isolation and physical distancing was lower in these countries compared to our 

estimates for Niger, Nigeria, and Mauritius, though the impact of the shielding approach was similar or higher. 

We may therefore have underestimated the relative impact of shielding compared to the other interventions in 

our analysis, though impact of shielding was also lower in scenarios where contact within the shielded 

population increased, compared to the impact found in Niger, Nigeria, and Mauritius. 

 

Discussion 

Main findings 

We explored the impact of different non-pharmaceutical control interventions and strategies (packages and 

sequences of interventions) that may effectively be implemented in African countries to mitigate COVID-19 

epidemics. Short of an indefinite-duration lock-down, none of the interventions would likely avert very large 

epidemics that result in high mortality and extreme pressure on health services. However, both self-isolation 

of symptomatic people and moderate physical distancing could translate into relatively moderate but, in 

absolute terms, very sizable reductions in severe cases and deaths. The shielding option would likely require 

high levels of adherence and isolation to yield appreciable reductions in health service pressure, but could 

have a higher potential to reduce mortality in the short-term than other interventions, as it focuses on those 

who experience the highest CFR. This option also promotes herd immunity through mixing of other age groups 

and thus carries a lesser risk of further epidemic peaks once measures are lifted. 
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Different shielding arrangements could be considered, ranging from individual arrangements wherever people 

already live in multi-room houses or compounds, to neighbours or extended family-members grouping the 

most vulnerable individuals in vacated houses, to larger, albeit epidemiologically riskier re-housing (e.g. in 

quarantined street blocks). To avoid the problem of transmission within the shielded population, all such 

arrangements would need to eliminate any traffic of external people in and out of shielded accommodation as 

much as possible ensuring basic needs are met, while also instituting infection control barriers, e.g. a 

designated exchange point for supplies and safe social interactions and limiting contact within the shielded 

population. While our model does not explore the micro-level dynamics of how seeding of infection into these 

accommodations would affect residents, we showed, as expected, that the amount of contact among high-risk 

shielded people matters: zero contact, equivalent to individual shielding, equates to the highest effect of the 

intervention, while an increase of contact from baseline, e.g. if shielded people are rehoused in more crowded 

conditions than in their households of origin, dampens the utility of this approach and could even lead to an 

increase in cases compared to the baseline of no intervention. 

We next combined the above interventions into a set of strategies, with a horizon of 12 months, that countries 

could consider. We assumed that any strategy would feature, at a minimum, self-isolation of symptomatic 

cases. Our predictions suggest that countrywide lockdowns of two months, if effective, would temporarily 

suppress and delay epidemics for around 2 months, as noted in Europe: this reprieve would potentially enable 

countries to mobilise resources and plan the implementation of the next phase of their strategy. These findings 

do not in themselves support lockdown measures as a universal solution, however: such measures may be 

ineffective (i.e. fail to achieve a contact rate reduction consistent with effective reproduction number < 1, the 

condition for suppression) or more harmful than beneficial, including in health terms, if they severely disrupt 

economies and livelihoods or encounter mistrust and community resistance. Rather, our predictions merely 

indicate that well-implemented lockdowns would achieve the intended effect.  

If lockdowns are not implemented, or after they end, we predict that a combination of general physical 

distancing and shielding high-risk individuals could be a potentially achievable mitigation strategy for countries 

to consider. Physical distancing entails a difficult trade-off between reducing attack rates (and hence epidemic 

peak size) and extending the duration of the epidemic, which in turn increases the period over which shielding 

should be maintained (as individuals will require to be shielded until well after the epidemic peak has finished). 

While stringent physical distancing (e.g. 50% reduction in extra-household contacts) would have a large 

impact, such reductions may only be achieved through socio-economically damaging and potentially 

unacceptable restrictions to work, education and/or other forms of public life. By contrast, a 20% reduction in 

transmission may be more achievable and sustainable - in some settings, this could involve a combination of 

hygiene promotion, increased access to water, soap and other cleaning supplies (e.g. through state subsidies) 

and curtailment of some gatherings outside of work and school. It is unknown at present whether shielding is 

at all feasible and can attain our suggested target of 80% contact reduction between high- and low-risk people 

for 80% of high-risk people. Even at lower effectiveness levels, however, shielding would still offer benefits, 

particularly in terms of mortality, and accordingly need not be discounted as an option, particularly if it can be 

designed and led by communities themselves33, thereby requiring fewer resources than a top-down 

intervention. 

We only show estimates for the first 12 months in our analysis to make short-term predictions of the impact of 

different intervention strategies. There are still many unknowns about how SARS-CoV-2 would behave in in 

different contexts in Africa (rural, urban, peri-urban, displacement settings, etc.) and how people will respond 

to policy measures; hence policy makers will continuously need to revisit the strategy to take current 

developments into account. Our analysis does not necessarily reflect the total epidemic size, as additional 
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severe and critical cases could accrue during the second year, especially under strategies that focus heavily 

on physical distancing or if natural immunity to infection is short-lived.4 

 

Comparison with other studies 

Although several studies have looked at the spread of COVID-19 in African countries34–38, we are only aware 

of one other modelling study which considers the impact of different interventions on the spread of COVID-19 

in Africa. Walker et al.39 used a similar SEIR model and predicted a near 90% reduction in cases for sub-

Saharan Africa assuming a 75% reduction in contacts starting at an incidence of 0.2 deaths per 100,000 

population per week and sustained over the first 250 days of an epidemic. Comparisons between these studies 

are complicated due to different time periods of models and strategies investigated, but both point to a large 

unmitigated epidemic which can be reduced substantially due to strong physical distancing measures. 

However, even with these measures in place all models suggest a high burden of disease and mortality across 

Africa.  

  

Study limitations 

While SEIR models have successfully been used to model COVID-19 epidemics to date in Europe, our 

predictions for African countries are subject to potential inaccuracy. Transmissibility may vary considerably 

across Africa, and it is possible that countries with very concentrated urban populations would see an acute 

exponential rise in cases, with a secondary, flatter curve affecting outlying rural regions: models accounting 

for these very distinct settlement types may be more useful for national planning. Consequently, the duration 

of time that countries will be affected by COVID-19 according to our model should be treated with caution. 

While we accounted for age distributions, we did not have country-specific data on contact patterns among 

age groups. Instead, we used synthetic contact matrices extrapolated from European data by using local data 

on household, workplace and school composition in the African settings considered. A sensitivity analysis with 

empirical African contact pattern data suggested lower effects of general distancing and higher effects of 

shielding, but these matrices were collected in specific areas and may not be representative of contact patterns 

within the entire country or indeed Africa as a whole.  

Our results are also heavily affected by disease severity assumptions. We applied age-specific risks of 

developing severe disease per infection, as estimated using data from China and the Diamond Princess 

outbreak, but shifted these to earlier life by a decade to represent plausible differences in biological age in 

Africa resulting from life-course exposures. This crude approach may be confounded by differences in the age-

specific prevalence of co-morbidities in African countries, as well as inter-country differences in comorbidity 

prevalence. Specifically, conditions with potential (tuberculosis39) and as yet undocumented (HIV, 

undernutrition, sickle-cell disease) interactions with SARS-CoV-2 infection are far more prevalent in Africa than 

China and affect relatively young age groups10: these could increase COVID-19 severity overall and shift the 

distribution of severe cases to younger age. Additionally, the proportion of detected and correctly managed 

cases of non-communicable diseases of known import to COVID-19 progression (cardiovascular disease, 

diabetes, chronic obstructive pulmonary disease, chronic kidney disease) is far lower in most of Africa than in 

China and Europe: this may further exacerbate disease severity. These differing patterns of co-morbidity may 

also affect the proportion of patients requiring intensive care and case-fatality: for the latter, we have provided 

illustrative findings assuming age-constant increases in Africa compared to China, based on an assumption of 

https://paperpile.com/c/8MHCKZ/CpBE
https://paperpile.com/c/8MHCKZ/TECx
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very limited treatment. These findings will need to be refined as more evidence accrues on the virus’ CFR in 

African settings. 

Severity and CFR assumptions mostly affect the usefulness of the shielding option. Shielding criteria should 

include a diagnosis of co-morbidity, and as such our findings, based solely on an age criterion, are under-

estimates insofar as they exclude younger people with known comorbidities. However, in practice the low non-

communicable disease treatment coverage in Africa means the age criterion would largely define who is 

shielded: lowering this threshold, e.g. to 50 years, would capture a larger fraction of undiagnosed co-

morbidities. Tiered shielding approaches, whereby middle-aged moderate-risk people benefit from partial 

distancing measures (e.g. support to stay home from work), may also be worth considering. 

  

Conclusions 

COVID-19 epidemics in African countries may bear very serious and multi-faceted impacts. Nevertheless, 

preventive strategies to substantially mitigate these impacts are not foreclosed to African governments and 

societies, particularly if they receive assistance from humanitarian and development actors, diaspora 

communities, faith-based institutions, the private sector and others within these societies who have means to 

assist the response. Self-isolation and moderate physical distancing can be effective interventions. The 

shielding option can be proactively explored to test locally appropriate solutions. As the epidemic progresses, 

real-time modelling and strategy evaluation should be made available to African countries that do not yet have 

this expertise: this requires coordination and proactive support from the worldwide scientific community, as 

well as close exchange of information between modelling teams and country-based surveillance, so as to 

gradually refine predictions. 
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Supplementary material 

Model structure 

We used a stochastic compartmental dynamic transmission model, stratified into age groups 𝑖. The model’s 

structure is depicted in Figure S1. 

 

 

Supplemental Figure S1. State transitions in the model. Individuals in the stochastic compartmental model 

are classified into susceptible, exposed (infected but not yet infectious), infectious (preclinical, clinical, or 

subclinical), and recovered states. The model is stratified into 5-year age bands. Taken from Davies et al.21  

 

The model tracks a country’s population over discrete 6-hour increments. Within every age group, the 

population is distributed into compartments of susceptible individuals (𝑆), who become exposed (𝐸) after 

effective contact with an infectious person (exposed here means infected but not yet infectious). At the end of 

the latency period, people divide into clinical (symptomatic) and sub-clinical (asymptomatic) cases with 

complementary probabilities 𝑦𝑖 and 1 − 𝑦𝑖, at which point infectiousness starts. Clinical cases experience a 

pre-clinical but infectious state 𝐼𝑃 followed by a clinical, infectious state 𝐼𝐶. Sub-clinical cases (𝐼𝑆) are assumed 

to be half as infectious as clinical cases. All individuals have the same duration of infectiousness. The clinical 

severity of cases is not assumed to affect infectiousness. Individuals either recover or die, transitioning to the 

removed (𝑅) compartment. Transitions to different clinical states (symptom onset to severe case, critical or 

not; from onset of severe symptoms to recovery or death) occur with delays drawn from the literature: these 

delays have no bearing on the force of infection / transmissibility. 

 

Force of infection and transmissibility 

The force of infection is defined as the rate at which susceptible people enter the exposed compartment, and 

is computed for any age group 𝑖 and time increment 𝑡 as 

𝜆𝑖,𝑡 = 𝑢 ∑ 𝑐𝑖𝑗,𝑡

𝐼𝑃𝑗 + 𝐼𝐶𝑗 + 𝑓𝐼𝑆𝑗

𝑁𝑗
𝑗
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where 𝑢 is the probability of infection per contact with an infectious person, 𝑐𝑖𝑗 is the number of contacts that 

an individual in age group 𝑖 has with individuals in age group 𝑗 per time increment (drawn from the contact 

matrix), and 
𝐼𝑃𝑗+𝐼𝐶𝑗+𝑓𝐼𝑆𝑗

𝑁𝑗
 is the probability that any age j individual contacted is in fact infectious, with 𝑓 denoting 

the relative infectiousness of subclinical cases, compared to clinical cases. 

The amount of time a given individual spends in states 𝐸, 𝐼𝑃, 𝐼𝐶 , or 𝐼𝑠 is drawn from distributions 𝑑𝐸, 𝑑𝑃, 𝑑𝐶 

and 𝑑𝑆, respectively (Table S1). The basic reproduction number 𝑅0 is defined as the average number of 

secondary infections generated by a typical infectious individual in a fully susceptible population and is 

calculated as the absolute value of the dominant eigenvalue of the next generation matrix (NGM), which was 

derived by linearizing the system at epidemic equilibrium.40 Lastly, 𝑢 is derived for any stochastic run from the 

ratio of this eigenvalue and the 𝑅0 value selected for that run. 

 

Parameter values 

The model was implemented stochastically by selecting random values of parameters from their uncertainty 

distributions (Table S1). 

 

Transmission dynamics and state transition parameters 

Table S1. Model parameters relevant to transmission and state transitions. Adapted from Davies et al.21 

Parameter Description Value Reference 

𝑑𝐸 Latent period in days ~ gamma(μ = 4, k = 4) 41–43 

𝑑𝑃 Duration of preclinical infectiousness in 
days 

~ gamma(μ = 1.5, k = 4) 44 

𝑑𝐶 Duration of clinical infectiousness in 
days 

~ gamma(μ = 3.5, k = 4) 41–43 

𝑑𝑆 Duration of subclinical infectiousness in 
days 

~ gamma(μ = 5, k = 4) Assumed to be the 
same as duration of 
total infectious period 
for clinical cases 

𝑢 Probability of transmission per contact 
with an infectious individual 

See text  Derived 

𝑦𝑖 Probability of clinical symptoms on 
infection for age group 𝑖 

Age-dependent, as 
estimated in 22 

22 

𝑓 Relative infectiousness of subclinical 
cases 

50% Assumed 

𝑐𝑖𝑗 Number of age-j individuals contacted 
by an age-I individual per day 

Country-specific synthetic 
contact matrix 

24 

𝑅0 Basic reproduction number ~ normal(μ = 2.6, s = 0.5) 25 

𝑁𝑖 Number of age 𝑖 individuals Demographic estimates 23 

𝛥𝑡 Time step for discrete-time simulation 0.25 days  
 

Delay from symptom onset to becoming 
a severe case in days 

~ gamma(μ = 7, k = 7) 45,46 
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Parameter Description Value Reference  
Duration of severe, non-critical disease 
in days 

~ gamma(μ = 8, k = 8) Duration based on NHS 
data for J12: viral 
pneumonia, not 
elsewhere classified 47  

Duration of severe, critical disease in 
days 

~ gamma(μ = 10, k = 10) 46 

 
Proportion of hospitalised cases that 
require critical care 

30% 46 

 
Delay from symptom onset to death in 
days 

~ gamma(μ = 22, k = 22) 45,48 

 

 

Severity parameters 

We used the same severity estimates as in Davies et al21: these reflect the early COVID-19 outbreak in China48, 

corrected based on data from the Diamond Princess cruise ship outbreak.49 However, in African and low-

income countries, someone’s vulnerability to infection may correspond to that of an individual with greater 

chronological age in a high-income setting due to life-course effects like malnutrition, infections and often 

unmanaged non-communicable diseases. It is not yet known whether this increased vulnerability will affect 

COVID-19 age-specific disease risk in African populations. To provide conservative estimates, we shifted age-

specific severity risks by 10 years towards younger ages. In addition, we multiplied the CFRs of severe and 

critical cases by a factor of 1.5 to account for lower access to care. Age-specific severity estimates used are 

presented in Table S2. 

 

Table S2. Model parameters relevant to age-specific disease outcomes. 

Age 
Risk of becoming a 

severe case 

Proportion of severe 
cases that are 

critical 

Case-fatality ratio 
among severe, non-

critical cases 

Case-fatality ratio 
among critical 

cases 

< 10 0.76% 30% 0.14% 75% 

10 to 19 0.81% 30% 0.15% 75% 

20 to 29 0.99% 30% 0.18% 75% 

30 to 39 1.85% 30% 0.35% 75% 

40 to 49 5.43% 30% 1.01% 75% 
50 to 59 15.05% 30% 2.81% 75% 

60 to 69 33.29% 30% 6.21% 75% 

70+ 61.76% 30% 11.52% 75% 
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Additional analyses

 
Supplemental Figure S2. Bed demand and deaths during the first 12 months of the epidemic, under different strategies. We show 

runs representing the median, 95%, and 50% quantiles of total number of the corresponding outcome, after 12 months. 
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Supplemental Figure S3. Bed demand and deaths during the first 24 months of the epidemic, under different strategies. All 

interventions are stopped after 12 months, and no new interventions are assumed to be in place in the second year. We show runs 

representing the median, 95%, and 50% quantiles of total number of the corresponding outcome, after 24 months. 
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Supplemental Figure S4. Bed demand and deaths during the first 12 months of the epidemic, under different strategies preceded 

by a two-month lockdown. We show runs representing the median, 95%, and 50% quantiles of total number of the corresponding outcome, 

after 12 months. 
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Thick solid lines show the runs representing the median daily number of hospital beds needed for severe cases, critical cases, and the 

number of deaths during the first 12 months of the epidemic. Dashed lines show runs representing 50% quantiles, while dotted lines show 

runs representing 95% quantiles, of each respective value over 500 model runs. Except for the unmitigated scenario, all scenarios assume 

50% self-isolation during the symptomatic period of all clinical cases throughout the entire course of the epidemic and are preceded by a two-

month lockdown where contacts outside of the household are reduced by 80%. Lockdown starts when daily incidence of symptomatic cases 

reaches 1 case per 10 000 people, while other strategies start once the lockdown is lifted. Non-lockdown distancing strategies assume 20% 

or 50% reduction in all contacts outside of the household. Shielding strategies assume shielding of 80% of the population aged 60+, 

irrespective of underlying comorbidities, with an 80% reduction in contacts between the shielded and unshielded population, and no change 

in contacts within the shielded population. 

 

Supplemental Table S3. Key outcomes over 12 months of strategies preceded by two-month lockdown. 

Niger 

Key outcome Unmitigated 20% distancing 50% distancing 80% shielding 
80% shielding + 
20% distancing 

80% shielding + 
50% distancing 

Symptomatic cases 4,101,000 
(1,873,000 - 

5,240,000) 

2,771,000 
(163,000 - 
3,990,000) 

1,311,000 
(85,000 - 

2,711,000) 

3,326,000 
(206,000 - 
4,383,000) 

2,667,000 
(153,000 - 
3,813,000) 

1,224,000 
(97,000 - 

2,559,000) 

Severe cases 106,000 
(39,000 - 154,000) 

68,000 
(3,000 - 110,000) 

33,000 
(2,000 - 76,000) 

60,000 
(4,000 - 89,000) 

48,000 
(3,000 - 76,000) 

22,000 
(2,000 - 51,000) 

Critical cases 45,000 
(17,000 - 66,000) 

29,000 
(1,000 - 47,000) 

14,000 
(1,000 - 33,000) 

26,000 
(2,000 - 38,000) 

21,000 
(1,000 - 33,000) 

10,000 
(1,000 - 22,000) 

Deaths 39,000 
(14,000 - 56,000) 

25,000 
(1,000 - 40,000) 

12,000 
(1,000 - 28,000) 

21,000 
(1,000 - 31,000) 

17,000 
(1,000 - 27,000) 

8,000 
(1,000 - 18,000) 

Symptomatic attack rate 16.9% 
(7.7 - 21.6) 

11.4% 
(0.7 - 16.5) 

5.4% 
(0.4 - 11.2) 

13.7% 
(0.9 - 18.1) 

11% 
(0.6 - 15.8) 

5.1% 
(0.4 - 10.6) 

Epidemic peak (months) 3 (3 - 7) 7 (5 - 11) 7 (3 - 11) 6 (5 - 11) 7 (5 - 11) 6 (2 - 10) 

Peak deaths 1,500 
(300 - 2,800) 

600 
(0 - 1,300) 

100 
(0 - 500) 

700 
(0 - 1,200) 

400 
(0 - 800) 

100 
(0 - 300) 

Peak non-ICU beds 
needed 

23,200 
(4,400 - 43,200) 

9,900 
(500 - 19,800) 

2,000 
(400 - 8,200) 

10,600 
(700 - 18,100) 

6,600 
(500 - 13,000) 

1,300 
(400 - 5,100) 

Peak ICU beds needed 12,200 
(2,300 - 22,500) 

5,200 
(300 - 10,400) 

1,100 
(200 - 4,300) 

5,600 
(300 - 9,500) 

3,500 
(300 - 6,800) 

700 
(200 - 2,700) 

 

 

 

 

Nigeria 
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Key outcome Unmitigated 20% distancing 50% distancing 80% shielding 
80% shielding + 
20% distancing 

80% shielding + 
50% distancing 

Symptomatic cases 48,728,000 
(27,753,000 - 

56,537,000) 

37,553,000 
(124,000 - 

48,968,000) 

18,807,000 
(110,000 - 

37,679,000) 

42,207,000 
(229,000 - 

50,862,000) 

36,099,000 
(158,000 - 

46,849,000) 

17,859,000 
(138,000 - 

35,787,000) 

Severe cases 1,631,000 
(734,000 - 2,119,000) 

1,179,000 
(3,000 - 1,733,000) 

579,000 
(3,000 - 1,323,000) 

952,000 
(4,000 - 1,300,000) 

789,000 
(3,000 - 1,165,000) 

371,000 
(3,000 - 858,000) 

Critical cases 699,000 
(314,000 - 908,000) 

505,000 
(1,000 - 743,000) 

248,000 
(1,000 - 567,000) 

408,000 
(2,000 - 557,000) 

338,000 
(1,000 - 499,000) 

159,000 
(1,000 - 368,000) 

Deaths 605,000 
(271,000 - 790,000) 

438,000 
(1,000 - 646,000) 

217,000 
(1,000 - 495,000) 

340,000 
(2,000 - 468,000) 

283,000 
(1,000 - 419,000) 

133,000 
(1,000 - 309,000) 

Symptomatic attack 
rate 

23.6% 
(13.5 - 27.4) 

18.2% 
(0.1 - 23.8) 

9.1% 
(0.1 - 18.3) 

20.5% 
(0.1 - 24.7) 

17.5% 
(0.1 - 22.7) 

8.7% 
(0.1 - 17.4) 

Epidemic peak 
(months) 

4 (3 - 8) 7 (5 - 12) 8 (4 - 12) 7 (5 - 12) 7 (5 - 12) 8 (3 - 12) 

Peak deaths 25,600 
(5,700 - 43,200) 

13,200 
(0 - 26,700) 

3,300 
(0 - 13,300) 

12,800 
(100 - 22,200) 

8,500 
(0 - 17,100) 

2,000 
(0 - 8,100) 

Peak non-ICU beds 
needed 

391,000 
(85,800 - 662,900) 

199,400 
(500 - 405,800) 

49,800 
(500 - 199,900) 

199,400 
(800 - 347,400) 

131,400 
(600 - 266,000) 

31,200 
(600 - 125,600) 

Peak ICU beds needed 204,500 
(45,300 - 343,900) 

104,900 
(300 - 212,100) 

26,300 
(300 - 105,300) 

104,600 
(400 - 180,900) 

69,100 
(300 - 139,100) 

16,500 
(300 - 66,100) 

 
 
Mauritius 

Key outcome Unmitigated 20% distancing 50% distancing 80% shielding 
80% shielding + 
20% distancing 

80% shielding + 
50% distancing 

Symptomatic cases 490,000 
(314,000 - 546,000) 

389,000 
(6,000 - 478,000) 

244,000 
(5,000 - 392,000) 

392,000 
(34,000 - 448,000) 

345,000 
(7,000 - 419,000) 

210,000 
(6,000 - 340,000) 

Severe cases 44,000 
(24,000 - 53,000) 

32,000 
(0 - 43,000) 

20,000 
(0 - 35,000) 

23,000 
(2,000 - 30,000) 

20,000 
(0 - 27,000) 

12,000 
(0 - 21,000) 

Critical cases 19,000 
(10,000 - 23,000) 

14,000 
(0 - 19,000) 

9,000 
(0 - 15,000) 

10,000 
(1,000 - 13,000) 

9,000 
(0 - 11,000) 

5,000 
(0 - 9,000) 

Deaths 17,000 
(9,000 - 21,000) 

12,000 
(0 - 17,000) 

8,000 
(0 - 13,000) 

9,000 
(1,000 - 11,000) 

7,000 
(0 - 10,000) 

4,000 
(0 - 8,000) 

Symptomatic attack 
rate 

38.5% 
(24.7 - 42.9) 

30.6% 
(0.5 - 37.6) 

19.2% 
(0.4 - 30.8) 

30.8% 
(2.7 - 35.2) 

27.1% 
(0.6 - 32.9) 

16.5% 
(0.5 - 26.7) 

Epidemic peak 
(months) 

2 (2 - 5) 5 (4 - 11) 6 (2 - 12) 5 (4 - 10) 5 (3 - 11) 6 (2 - 11) 

Peak deaths 800 
(200 - 1,200) 

300 
(0 - 600) 

100 
(0 - 300) 

300 
(0 - 400) 

200 
(0 - 300) 

100 
(0 - 200) 

Peak non-ICU beds 
needed 

11,500 
(3,000 - 18,000) 

5,200 
(100 - 8,800) 

1,500 
(100 - 4,600) 

4,500 
(400 - 6,500) 

3,000 
(100 - 5,000) 

800 
(100 - 2,500) 

Peak ICU beds needed 6,000 
(1,600 - 9,300) 

2,700 
(0 - 4,600) 

800 
(0 - 2,400) 

2,400 
(200 - 3,400) 

1,600 
(0 - 2,600) 

400 
(0 - 1,300) 
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Supplementary Figure S5. Sensitivity analysis: bed demand and deaths during the first 12 months of the epidemic, under different 

strategies but in the absence of self-isolation. We show runs representing the median, 95%, and 50% quantiles of total number of the 

corresponding outcome, after 12 months. 
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Supplementary Table S4. Sensitivity analysis: key outcomes during the first 12 months of the epidemic, under different strategies 

but in the absence of self-isolation. 

Niger 

Key outcome Unmitigated 20% distancing 50% distancing 80% shielding 
80% shielding + 
20% distancing 

80% shielding + 
50% distancing 

Symptomatic cases 4,101,000 
(1,873,000 - 

5,240,000) 

3,447,000 
(1,209,000 - 

4,745,000) 

2,043,000 
(457,000 - 
3,556,000) 

3,993,000 
(1,830,000 - 

5,082,000) 

3,359,000 
(1,241,000 - 

4,599,000) 

2,023,000 
(522,000 - 
3,450,000) 

Severe cases 106,000 
(39,000 - 154,000) 

88,000 
(25,000 - 137,000) 

52,000 
(10,000 - 102,000) 

76,000 
(29,000 - 110,000) 

63,000 
(20,000 - 97,000) 

38,000 
(9,000 - 71,000) 

Critical cases 45,000 
(17,000 - 66,000) 

38,000 
(11,000 - 59,000) 

22,000 
(4,000 - 44,000) 

33,000 
(13,000 - 47,000) 

27,000 
(9,000 - 41,000) 

16,000 
(4,000 - 30,000) 

Deaths 39,000 
(14,000 - 56,000) 

32,000 
(9,000 - 50,000) 

19,000 
(3,000 - 37,000) 

27,000 
(10,000 - 39,000) 

22,000 
(7,000 - 34,000) 

13,000 
(3,000 - 25,000) 

Symptomatic attack 
rate 

16.9% 
(7.7 - 21.6) 

14.2% 
(5 - 19.6) 

8.4% 
(1.9 - 14.7) 

16.5% 
(7.6 - 21) 

13.9% 
(5.1 - 19) 

8.4% 
(2.2 - 14.3) 

Epidemic peak 
(months) 

3 (3 - 7) 4 (3 - 7) 4 (3 - 6) 3 (3 - 7) 3 (3 - 6) 4 (3 - 6) 

Peak deaths 1,500 
(300 - 2,800) 

1,100 
(100 - 2,200) 

400 
(100 - 1,200) 

1,100 
(200 - 1,900) 

700 
(100 - 1,500) 

300 
(100 - 800) 

Peak non-ICU beds 
needed 

23,200 
(4,400 - 43,200) 

16,400 
(2,200 - 34,200) 

6,300 
(1,300 - 18,800) 

16,500 
(3,200 - 30,500) 

11,700 
(1,900 - 24,000) 

4,600 
(1,100 - 13,100) 

Peak ICU beds needed 12,200 
(2,300 - 22,500) 

8,600 
(1,200 - 17,900) 

3,300 
(700 - 9,900) 

8,700 
(1,700 - 15,900) 

6,100 
(1,000 - 12,500) 

2,40 
 (600 - 6,900) 

 

 

Nigeria 

Key outcome Unmitigated 20% distancing 50% distancing 80% shielding 
80% shielding + 
20% distancing 

80% shielding + 
50% distancing 

Symptomatic cases 48,728,000 
(27,753,000 - 

56,537,000) 

43,371,000 
(18,183,000 - 

53,328,000) 

28,843,000 
(3,613,000 - 
44,036,000) 

46,958,000 
(26,850,000 - 

54,336,000) 

41,776,000 
(17,414,000 - 

51,212,000) 

27,724,000 
(4,233,000 - 
42,189,000) 

Severe cases 1,631,000 
(734,000 - 
2,119,000) 

1,421,000 
(463,000 - 
1,966,000) 

925,000 
(87,000 - 

1,594,000) 

1,124,000 
(507,000 - 
1,471,000) 

966,000 
(314,000 - 
1,346,000) 

610,000 
(80,000 - 

1,059,000) 

Critical cases 699,000 
(314,000 - 908,000) 

609,000 
(199,000 - 843,000) 

396,000 
(37,000 - 683,000) 

482,000 
(217,000 - 630,000) 

414,000 
(134,000 - 577,000) 

261,000 
(34,000 - 454,000) 

Deaths 605,000 
(271,000 - 790,000) 

528,000 
(171,000 - 733,000) 

346,000 
 (32,000 - 597,000) 

403,000 
(180,000 - 530,000) 

346,000 
(112,000 - 485,000) 

219,000 
(29,000 - 382,000) 

Symptomatic attack 
rate 

23.6% 
(13.5 - 27.4) 

21% 
(8.8 - 25.9) 

14% 
(1.8 - 21.4) 

22.8% 
(13 - 26.4) 

20.3% 
(8.4 - 24.8) 

13.4% 
(2.1 - 20.5) 

Epidemic peak 
(months) 

4 (3 - 8) 4 (3 - 8) 5 (3 - 6) 4 (3 - 8) 4 (3 - 8) 4 (3 - 6) 
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Nigeria 

Key outcome Unmitigated 20% distancing 50% distancing 80% shielding 
80% shielding + 
20% distancing 

80% shielding + 
50% distancing 

Peak deaths 25,600 
(5,700 - 43,200) 

18,600 
(2,400 - 35,500) 

7,000 
(600 - 20,600) 

16,900 
(3,700 - 28,700) 

12,200 
(1,500 - 23,300) 

4,500 
(500 - 13,200) 

Peak non-ICU beds 
needed 

391,000 
(85,800 - 662,900) 

282,900 
(36,200 - 541,800) 

106,000 
(9,600 - 311,700) 

264,600 
(57,900 - 450,200) 

189,300 
(23,700 - 363,600) 

69,700 
(7,900 - 204,100) 

Peak ICU beds 
needed 

204,500 
(45,300 - 343,900) 

148,500 
(19,100 - 282,300) 

56,000 
(5,100 - 163,700) 

138,400 
(30,500 - 233,700) 

99,400 
(12,500 - 189,500) 

36,800 
(4,100 - 107,200) 

 

 

Mauritius 

Key outcome Unmitigated 20% distancing 50% distancing 80% shielding 
80% shielding + 
20% distancing 

80% shielding + 
50% distancing 

Symptomatic cases 490,000 
(314,000 - 

546,000) 

454,000 
(231,000 - 

527,000) 

348,000 
(74,000 - 
469,000) 

438,000 
(285,000 - 

488,000) 

405,000 
(211,000 - 

469,000) 

310,000 
(74,000 - 
415,000) 

Severe cases 44,000 
(24,000 - 53,000) 

40,000 
(17,000 - 50,000) 

30,000 
(5,000 - 44,000) 

28,000 
(15,000 - 35,000) 

25,000 
(11,000 - 33,000) 

19,000 
(4,000 - 28,000) 

Critical cases 19,000 
(10,000 - 23,000) 

17,000 
(7,000 - 22,000) 

13,000 
(2,000 - 19,000) 

12,000 
(7,000 - 15,000) 

11,000 
(5,000 - 14,000) 

8,000 
(2,000 - 12,000) 

Deaths 17,000 
(9,000 - 21,000) 

15,000 
(6,000 - 19,000) 

11,000 
(2,000 - 17,000) 

10,000 
(6,000 - 13,000) 

9,000 
(4,000 - 12,000) 

7,000 
(2,000 - 10,000) 

Symptomatic attack rate 38.5% 
(24.7 - 42.9) 

35.7% 
(18.2 - 41.4) 

27.4%  
5.8 - 36.9) 

34.4% 
(22.4 - 38.4) 

31.8% 
(16.6 - 36.9) 

24.4% 
(5.8 - 32.6) 

Epidemic peak (months) 2 (2 - 5) 3 (2 - 5) 3 (2 - 4) 2 (2 - 5) 2 (2 - 5) 3 (2 - 4) 

Peak deaths 800 
(200 - 1,200) 

600 
(100 - 1,000) 

300 
(0 - 700) 

500 
(100 - 700) 

300 
(100 - 600) 

200 
(0 - 400) 

Peak non-ICU beds 
needed 

11,500 
(3,000 - 18,000) 

8,800 
(1,500 - 15,300) 

4,300 
(500 - 10,000) 

7,000 
(1,800 - 11,000) 

5,300 
(900 - 9,200) 

2,600 
(500 - 6,000) 

Peak ICU beds needed 6,000 
(1,600 - 9,300) 

4,600 
(800 - 7,900) 

2,300 
(300 - 5,200) 

3,600 
(900 - 5,700) 

2,800 
(500 - 4,800) 

1,400 
22(200 - 3,100) 
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Estimated impact in countries with empirical contact data: Kenya, Uganda, 

and Zimbabwe 

We replicated the individual intervention analysis in three countries for which we had empirical contact 

matrices (Kenya, Uganda and Zimbabwe). As these data came from household sample surveys, we 

took one new bootstrapped sample from the contact matrix in each model run. 

Unmitigated epidemic projections are shown in Figure S6. Figure S7 shows the effects of self-isolation 

and physical distancing, which have been run for a subset of scenarios as used in the main paper for 

Niger, Nigeria and Mauritius only. Effect sizes appear lower than for the main analysis of Niger, Nigeria 

and Mauritius using synthetic contact matrices. 

Lastly, as shown in Figure S8, the potential effect of shielding appears about 10% higher than for the 

main analysis, but with wider uncertainty due to the propagation of contact matrix sampling error. In 

addition, Uganda, Kenya, and Zimbabwe have different age-distributions, so results are not directly 

comparable. This analysis shows shielding to be comparatively more sensitive to changes in contact 

among shielded individuals, with a substantial loss of effect when shielded people greatly increase their 

contacts, e.g. if they are rehoused in overcrowded conditions. 

 

 

Supplemental Figure S6. Projected incidence of symptomatic COVID-19 cases over time for 

simulations of an unmitigated epidemic, by country with empirical contact matrix data. The green 

line shows the run corresponding to the median total of cases at the end of the simulation across all 

model runs. Grey lines show individual stochastic model runs, where R0 in each run was sampled from 

a normal distribution with mean 2.6 and standard deviation 0.5.  
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Supplementary Figure S7: Estimated reduction in severe cases following A) self-isolation of 

symptomatic individuals and B) population-wide physical distancing, by country with empirical 

contact matrix data. Medians (circles), 95% (light-green area) and 50% (dark green area) quantiles 

for the percentage reduction in severe cases (patients requiring hospitalisation) during the first 12 

months of the epidemic for different levels of compliance, for each country, across 500 model runs. 
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Supplementary Figure S8: Estimated reduction in severe cases following shielding of high-risk 

individuals, by country with empirical contact matrix data. Medians (dashed lines) and 95% 

quantiles (shaded areas) of the percentage reduction in severe cases during the first 12 months of the 

epidemic for different levels of reduction in contacts between shielded and unshielded people (x axis), 

different level of contacts among shielded people (facet rows), and for different percentages of ≥ 60 

years old being shielded (see legend) for each country, across 500 model runs.  
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Sensitivity to transmissibility assumption (𝑅0) 

Uncertainty intervals in our results were mainly reflective of the range of 𝑅0 values we sampled in the 

model. Here we show our results stratified by 𝑅0 values, as sampled across 500 runs from a normal 𝑅0 

distribution with mean 2.6 and standard deviation of 0.5. 

Supplemental Figure S9 shows the unmitigated epidemic in each country for every model run (i.e. 

randomly sampled 𝑅0value) where 𝑅0 is grouped into values <2, between 2 and 3, and >3. Epidemics 

with high 𝑅0 have a higher peak number of cases and total number of cases, and will peak earlier, 

whereas epidemics with a low 𝑅0 will have a lower peak number of cases and total number of cases, 

and will peak later. 

 

 

Supplemental Figure S9. Projected incidence of symptomatic COVID-19 cases over time for 

simulations of an unmitigated epidemic, by 𝑅0  value. 

 

Supplemental Figure S10A shows the impact of self-isolation and physical distancing (equivalent to 

Figure 2 in the main text), but for every single run and stratified by 𝑅0. High reductions as a result of 

self-isolation may only be achieved with very low values of 𝑅0, and are less likely in Niger, which has a 

younger population (i.e. symptomatic individuals are relatively fewer and thus contribute less to 

transmissibility). However, with higher values of 𝑅0, the impact of self-isolation is roughly similar across 

countries. Runs with smaller 𝑅0 are more affected by stochasticity of the model, which is why these 

estimates do not always continue their upward trend. 

Supplemental Figure S10B shows the impact of physical distancing on the total number of severe cases. 

The impact of physical distancing can be substantially lower when 𝑅0 is higher, as greater reductions in 

contacts will be needed to bring 𝑅 closer to 1. 
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Supplemental Figure S10. Impact of A. self-isolation and B. physical distancing, by 𝑹𝟎 value 

sampled. 

 

Lastly, Supplemental Figure S11 shows the impact of shielding 80% of the high-risk population under 

various reductions in contacts between the shielded and unshielded population, and changes in contact 

within the shielded population, for every single run. It is equivalent to Figure 3 in the main text. As 

shielding does not significantly affect the overall transmission dynamics in the population, impact does 

not vary much between different values of 𝑅0. Relative reductions could be substantially higher or lower 

at low values of 𝑅0 , but reflect only a small absolute difference. 

In Mauritius, where 18% of the population are 60+ years old (i.e. 15% are shielded under a shielding 

coverage of 80%), variation in 𝑅0 matters if contact within the shielded population changes from 

baseline, as this does significantly affect transmission dynamics in the overall population (the 15% of 

people shielded are relatively more infectious than the average). 
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Supplemental Figure S11. Impact of shielding by 𝑹𝟎 value sampled. 

 


