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Abstract 
 
Background: Asymptomatic or subclinical SARS-CoV-2 infections are often unreported, which 
means that confirmed case counts may not accurately reflect underlying epidemic dynamics. 
Understanding the level of ascertainment (the ratio of confirmed symptomatic cases to the true 
number of symptomatic individuals) and undetected epidemic progression is crucial to informing 
COVID-19 response planning, including the introduction and relaxation of control measures. 
Estimating case ascertainment over time allows for accurate estimates of specific outcomes such as 
seroprevalence, which is essential for planning control measures. 
  
Methods: Using reported data on COVID-19 cases and fatalities globally, we estimated the 
proportion of symptomatic cases (i.e. any person with any of fever >= 37.5°C, cough, shortness of 
breath, sudden onset of anosmia, ageusia or dysgeusia illness) that were reported in 210 countries and 
territories, given those countries had experienced more than ten deaths. We used published estimates 
of the baseline case fatality ratio (CFR), which was adjusted for delays and under-ascertainment, then 
calculated the ratio of this baseline CFR to an estimated local delay-adjusted CFR to estimate the level 
of under-ascertainment in a particular location. We then fit a Bayesian Gaussian process model to 
estimate the temporal pattern of under-ascertainment. 
 
Results: We estimate that, during March 2020, the median percentage of symptomatic cases detected 
across the 84 countries which experienced more than ten deaths ranged from 2.38% (Bangladesh) to 
99.6% (Chile). Across the ten countries with the highest number of total confirmed cases as of 6th 
July 2020, we estimated that the peak number of symptomatic cases ranged from 1.4 times (Chile) to 
17.8 times (France) larger than reported. Comparing our model with national and regional 
seroprevalence data where available, we find that our estimates are consistent with observed values. 
Finally, we estimated seroprevalence for each country. Despite low case detection in some countries, 
our results that adjust for this still suggest that all countries have had only a small fraction of their 
populations infected as of July 2020. 
 
Conclusions: We found substantial under-ascertainment of symptomatic cases, particularly at the 
peak of the first wave of the SARS-CoV-2 pandemic, in many countries. Reported case counts will 
therefore likely underestimate the rate of outbreak growth initially and underestimate the decline in 
the later stages of an epidemic. Although there was considerable under-reporting in many locations, 
our estimates were consistent with emerging serological data, suggesting that the proportion of each 
country's population infected with SARS-CoV-2 worldwide is generally low. 
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Introduction 
 
The pandemic of the novel coronavirus SARS-CoV-2 has caused 11.7 million confirmed cases and 
538,818 deaths as of 6h July 2020 (1). As a precautionary measure, or in response to locally detected 
outbreaks, countries have introduced control measures with varying degrees of stringency (1), 
including isolation and quarantine; school and workplace closures; bans on social gatherings; physical 
distancing and face coverings; and stay-at-home orders  (2,3). Several features of SARS-CoV-2 make 
accurate detection during an ongoing epidemic challenging (4–6), including high transmissibility 
(3,7–9); an incubation period with a long-tailed distribution (10); pre-symptomatic transmission (11); 
and the existence of asymptomatic infections, which may also contribute to transmission (12). These 
attributes mean that infections can go undetected (13) and that countries may only detect and report a 
fraction of their infections (3,14). 
 
Understanding the extent of unreported infections in a given country is crucial for situational 
awareness. If the true size of the epidemic can be estimated, this enables a more reliable assessment of 
how and when non-pharmaceutical interventions (NPIs) should be both introduced, as infections rise, 
or relaxed as infections fall (3). Estimates of infection prevalence are also important for obtaining 
accurate measures of transmission: if the proportion of infections reported declines as the epidemic 
rises, the number of confirmed cases will grow slower than the actual underlying epidemic. Likewise, 
if detection rises as the epidemic declines, it may appear that transmission is not declining as fast as it 
is in reality. Underdetection of cases also makes it challenging to estimate at what stage of the 
epidemic a particular country is (15): viewed in isolation, case incidence data could reflect a very 
large undetected epidemic, or a smaller, better reported epidemic. 
 
To estimate how the levels of under-ascertainment vary over time, we present a modelling framework 
that combines data on reported cases and deaths, and published severity estimates. We apply our 
methods to countries that have reported more than ten deaths to date, then use these 
under-ascertainment estimates to reconstruct global epidemics in all countries where case and death 
time series data are available. We also compare the model estimates for cumulative incidence against 
existing seroprevalence results. Finally, we present the adjusted case curves for the ten countries with 
the highest confirmed and adjusted case numbers, as well as global prevalence estimates for 
SARS-CoV-2. 
 
Methods 
 
As SARS-CoV-2 infections that generate mild symptoms are more likely to be missed than severe 
cases, the ratio of cases to deaths, adjusting for delays from report to fatal outcome, can provide 
information on the possible extent of undetected symptomatic infections. Using a Bayesian Gaussian 
process model, we estimate changes in under-ascertainment over time, as described below. 
 
Adjusting for delay from confirmation to death 
In real time, simply dividing deaths to date by cases to date leads to a biased estimate of the case 
fatality ratio (CFR), because this naive calculation does not account for delays from confirmation of a 
case to death, and under-ascertainment of cases (5,6) and in some circumstances, under-ascertainment 
of deaths too. Using the distribution of the delay from hospitalisation to death for cases that are fatal, 
we can estimate how many cases so far are expected to have known outcomes (i.e. death or recovery), 
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and hence adjust the naive estimates of CFR to account for these delays and produce a delay-adjusted 
CFR (dCFR). Separately published dCFR  estimates for a given country can be used to estimate the 
number of symptomatic cases that would be expected for a given dCFR trajectory. Available 
estimates for the CFR that adjust for under-reporting typically range from 1–1.7% (7–10). Large 
studies in China and South Korea estimate the CFR at 1.38% (95% CrI: 1.23–1.53%) (9) and 1.7% 
(95% CrI: 1.1-2.5%) (7) respectively. 

Inferring level of under-ascertainment 
Assuming a baseline CFR of 1.4% (95% CrI: 1.2% - 1.5%), the ratio of this baseline CFR to our 
estimate of the dCFR for a given country can be used to derive a crude estimate of the proportion of 
symptomatic cases that go unreported for this country. For each country we calculate the dCFR on 
each day and use the ratio of the baseline CFR to the dCFR estimate to produce daily estimates of the 
proportion of unreported cases. We then use a Gaussian process (GP) model to fit a time-dependent 
under-ascertainment rate for each country. A more detailed description of the methods, including the 
mathematical details of the Gaussian process and the different sources of uncertainty present in the 
model, can be found in the Supplementary Material.  

With the aim of developing a parsimonious and easily transferable analysis framework, we assume the 
same baseline CFR for all countries in the main results. Given that CFR varies substantially with age 
(5), this induces a certain amount of error in our estimates, especially for countries with age 
distributions significantly different to China, where the data used to derive the baseline CFR estimates 
originated (5). Therefore, we include a version of all the main results where we compute an indirectly 
adjusted baseline CFR, using the underlying age distribution of each country using the wpp2019 R 
package (16) and the age-stratified CFR estimates from (17) in the supplementary material (Figures 
S5, S6 and S7), where we also include a verbose limitations section discussing at length the potential 
errors induced under such assumptions. 

Relationship between under-ascertainment and testing 
We attempt to characterise the relationship between testing and case ascertainment using our temporal 
under-ascertainment estimates and testing data for many countries from OurWorldInData (18). We do 
so by performing a correlation test between the two for all countries we had both data for. The 
resulting bivariate scatterplot is included in the supplementary material (Figure S3). 

Comparison against seroprevalence estimates 
We attempted to reconstruct the infection curves by first adjusting the reported case data for 
under-ascertainment (Figure 1). We then adjust further these estimated symptomatic case curves so 
that they represent all infections. We do so using the assumption that 50% of infections are 
asymptomatic overall, with an assumed wide range between 10% - 70% and mean-lagging the time 
point to adjust for the delay between onset of symptoms to confirmation (19). 

Data and code availability 
The data we use is publicly available online from the European Centre for Disease Control (ECDC) 
(20). The code for the dCFR and under-reporting estimation model can be found here: 
https://github.com/thimotei/CFR_calculation. The code to read in the under-ascertainment data and to 
reproduce the figures in this analysis can be found here: 
https://github.com/thimotei/covid_underreporting.  
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Results  

We estimated substantial variation in the proportion of symptomatic cases detected over time in many 
of the countries considered (Figure 1 & Figure S1). For example, during March the median percentage 
of symptomatic cases detected across the 84 countries which experienced more than ten deaths ranged 
from 2.38% (Bangladesh) to 99.6% (Chile). Also during March, the median percentage of 
symptomatic cases detected across Europe ranged from 4.81% (France) to 85.5% (Cyprus). 
 
Countries might expect to detect an increasing proportion of symptomatic cases if they scale up 
testing effort in response to the outbreak. To measure this, we compared our estimates for the 
proportion of cases detected with the number of tests performed per new case each day, which can 
provide an indication of testing effort with a country (18). Taking a moving average with a 7-day 
window, we found that countries that showed high testing effort did not necessarily have high levels 
of case ascertainment. For example, in a two-week period in March the United Kingdom performed 
80 tests per new case (the mean across Europe during the same period was 27 tests per new case). 
However, we estimate that also in the UK only between 3-10% of symptomatic cases were being 
detected (Figure 1). Overall, we found a weak positive correlation between testing effort and case 
ascertainment (Kendall’s correlation coefficient of 0.16). This suggests that increased testing effort 
can help to improve case ascertainment, but on its own is not enough to guarantee low levels of 
under-ascertainment.  
 
Using our temporal under-ascertainment trends, we estimate that during March, April, and May the 
percentage of symptomatic cases detected in European countries and averaged over time ranged from 
4.8% - 86% (France - Cyprus), 5.8% - 100% (France - Belarus) and 11% - 86% (Hungary - Cyprus) 
respectively. By comparison, the number of reported tests performed per new confirmed case, 
averaged over the month in question, ranged between 2.7 to 76 in March (Belgium - Portugal), 2.7 to 
832 in April (Belgium - Slovakia) and 12 to 1334 (Ukraine - Lithuania) in May. 
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Figure 1: Illustrative examples of temporal variation in under-ascertainment and testing effort. 
Nine countries under-ascertainment and testing effort dynamics, where the 
under-ascertainment dynamics display a typical U-trend. The solid black line is the estimated 
median proportion of symptomatic cases ascertained over time and the shaded blue region is the 
95% credible interval of these ascertainment estimates. Dashed line shows the reported testing 
effort, which we defined as a 7-day moving average of the number of new tests per new case 
reported each day. 
 
Adjusting confirmed case data for under-ascertainment to obtain estimated symptomatic case curves, 
we found a much larger and more peaked epidemic in the ten countries with the highest total number 
of confirmed cases and the ten with the highest number of adjusted cases as of 6th July 2020 (Figure 
2, with estimates for other countries shown in Figure S2). Typically, the estimated peak of 
symptomatic cases in these countries ranged from 1.4 times (Chile) to 17.8 times larger (France) than 
the peak in the reported case data (Table 1). Moreover, in the five countries of these ten that had a 
clear initial peak before the end of May 2020, we estimated that the post-peak decline in the number 
of infections was steeper than that implied by the confirmed case curves (Figure 2B).  
 



 
 
Figure 2: Confirmed case curves adjusted for temporal under-ascertainment. Panel A: Confirmed 
cases (left) and adjusted cases (right) for the ten countries with the highest number of confirmed 
cases. Panel B: Confirmed cases (left) and adjusted cases (right) for the ten countries with the 
highest number of confirmed cases after adjusting for under-ascertainment. There are two 
countries which change between panels A and B: France and Mexico are replaced by Chile and 
Peru respectively. Panel C: The same curves plotted in panel A, but with a plot per country. 
Blue shaded region corresponds to the 95% CrI of the adjusted curves. Panels A and B 
highlight between country variation whereas panel C highlights within country variation. 
 
We also compared the estimated proportion of individuals infected in our model with seroprevalence 
studies that measured the prevalence of SARS-CoV-2 antibodies. We represent our cumulative 
incidence estimates in the same form as the observed serological estimates, as a percentage of the 
population. This is either the population of the country or the population of some smaller region or 
sub-region, depending on the serological dataset. We found that all but one of the published 
seroprevalence estimates fell within the 95% credible interval (CrI) of our estimated cumulative 
incidence curves over time, with the one exception being Denmark where we underestimated the 
observed seroprevalence (Figure 3).  
 
 
 
 



 
Figure 3: Estimated infection prevalence curves compared with observed seroprevalence data. 
Panel A: country-level comparisons. Panel B: City-level comparisons for Geneva, London and 
New York. Panel C: Regional-level comparisons, using six of the eight regions of England. 
North West and Yorkshire are aggregated together and London is shown above in Panel B: 
After adjusting the reconstructed new cases per day curves for potential asymptomatic 
infections and for the delay between onset of symptoms and confirmation, we sum up the cases 
and divide by the population in each country or region, to estimate the total percentage infected. 
We are then able to directly compare the model estimates to existing seroprevalence results 
(black points, with 95% binomial CI above and below). Dashed line shows the end of the 
serological testing period, therefore we lag the seroprevalence estimate by the mean delay 
between infection-to-seroconversion, which is likely to be around 14 days (21). 
 
 
Applying our estimation method to all countries for which case and death time series data are 
available, we produced a map of seroprevalence estimates as of 16th June (Figure 4A), suggesting that 
most infections by this point had been concentrated in Europe and the US. We estimate that between 
0.02% - 15% of populations in Europe have been infected. Cases have been rising in Latin America 
and Africa. For both continents combined, we estimate that between 0.00% - 3.48% of the population 
of these two continents had been infected as of 16 June 2020. We also reconstructed the early 
progression of the COVID-19 pandemic across Europe (Figure 4B), finding that the estimated 
infection prevalence over time was an order of magnitude higher than the confirmed case numbers 
suggest, with prevalence growing rapidly in late February and early March in several countries.  
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Figure 4: Map of estimated seroprevalence in different countries over time. A) Estimated 
seroprevalence of SARS-CoV-2 globally as of 7th June 2020, for all countries we have estimates 
for. B–D) The estimated seroprevalence of SARS-Cov-2 in Europe on B) 31st March, C) 30th 
April and D) 31st May.  
 
 
Discussion 
 
The epidemiological and clinical characteristics of SARS-CoV-2 mean that a large proportion of 
infections may go undetected (14,22). In the absence of serological data, the ratio between cases and 
deaths, adjusted for delays from confirmation-to-outcome, can be used to derive estimates of the 
proportion of symptomatic cases reported. Using this approach, we estimated that case ascertainment 
dropped substantially in many countries during the peak of their first epidemic wave. Although 
serological surveys are beginning to emerge (22), many countries do not have such data available, or 
may only have results from a single cross-sectional survey. The methods and estimates presented here 
can therefore provide an ongoing picture of the underlying epidemics, including local level dynamics 
as fine-scale surveillance data become available (23,24).  
 
Our analysis has some limitations. We assumed the age-adjusted baseline CFR was 1.4% (95% CrI: 
1.2% - 1.5%) (4), which is broadly consistent with other published estimates (5,25,26), and we 
assumed a range of 10% - 70% of infections were asymptomatic (22,27–29) with a mean value of 
50% (13). Given the uncertainty in these estimates, we propagated the variance in baseline CFR and 
range in proportion asymptomatic in the inference process so the final 95% credible interval reported 
for under-ascertainment reflects underlying uncertainty in the model parameters. We also assumed 
that deaths from COVID-19 are accurately reported. If local testing capacity is limited, or if testing 
policy affects attribution of deaths (for example, the evidence for the efficacy of post-mortem 
swabbing is lacking), deaths can be misattributed to a cause other than COVID-19. In that case, our 
model may underestimate the true burden of infection. Additionally, if a large proportion of 
transmission is concentrated within specific age groups, the effective CFR may be higher or lower 
than the assumed baseline; with better age-stratified temporal data on cases and deaths, it would be 
possible to explore the effect of this in more detail. However, our estimates were in general consistent 
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with published serological data, where available. Further, given that our estimates of 
under-ascertainment in many countries suggest that the numbers of symptomatic infections at the peak 
of the outbreak were one or two orders of magnitude larger than reported cases, even if deaths are 
under-reported, our estimates are still likely to be much closer to the true burden than locally reported 
cases imply. Our estimates of under-ascertainment over time require a time-series of COVID-19 
deaths as an input, a data source that may also exhibit reporting variation. One notable example of this 
was Spain during June 2020 (Figure S1). However, as our Gaussian process model quantifies 
time-varying case ascertainment, it is able to account for positive or negative spikes in reporting (14) 
(see the Extended Methods section in the Supplementary Material for more details). 

Since the temporal trend in under-ascertainment does not necessarily reflect trends in reported cases 
or testing effort, evidence synthesis methods such as the one presented here can provide additional 
insights into whether observed case patterns reflect the underlying epidemic dynamics. In the early 
stages of outbreaks, this method can provide an indication of whether a large proportion of cases are 
being detected – and hence whether transmission may be containable with targeted measures such as 
isolation and contact tracing – or whether transmission is more widespread and a more extensive 
response is required. Such estimates can also provide insights in the later stages of an outbreak, as 
they can indicate high levels of detection in countries that have achieved control. For example, in 
Australia, an adapted version of our model estimated that 80% (95% CrI: 55% - 100%) of cases had 
likely been ascertained during the outbreak (24). By adjusting for under-ascertainment, it is also 
possible to reconstruct the temporal dynamics of SARS-CoV-2 internationally. During February and 
early March 2020, importations of SARS-CoV-2 into the UK came primarily from Italy, Spain and 
France (30). This is consistent with the inferred progression of infection during this period in our 
model; we estimated that Italy, Spain, France and Belgium all had over 6.5% of the population 
infected by 31st March 2020 (30). 

 
Consistent with other studies (3,22), we estimated that the true numbers of symptomatic cases and 
infections are appreciably larger than the number of confirmed cases reported (Figures 1 and 2). We 
also estimated that the timing of the peak level of symptomatic cases may be considerably earlier or 
later than the raw confirmed case curve suggests (Table 1). Accurate surveillance of an ongoing 
outbreak is crucial for estimating key epidemiological values such as the reproduction number, and 
hence evaluating the impact of control measures  (21).  If reported case numbers do not reflect the 
shape and magnitude of the underlying epidemic, it may bias estimates of transmission potential and 
effectiveness of interventions. If levels of under-ascertainment are increasing, early interventions may 
appear to be more effective than they actually are, which could lead to delays in imposing more 
stringent measures. Likewise, if ascertainment increases in the declining phase of an epidemic, the 
effectiveness of interventions may be underestimated, potentially leading to measures remaining in 
place for longer than they would have been had more accurate data been available. 
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 Date Value at peak 

Location 
Peak of confirmed 

cases 
Estimated change 

in  peak date 
New confirmed 
cases at peak 

Estimated total cases 
(95% CrI) 

Brazil  6th June 2020 0 days 54,771 
122,512 (110,660 - 

137,374) 

Chile 18th June 2020 3 days 36,179 52,042 (47,828 -  56,338)  

France 1st April 2020 0 days 7,578 
134,594 (120,450 - 

151,352) 

India 21st June 2020 18 days 15,413 48,513 (43,433 - 54,939) 

Iran 5th April 2020 0 days 5,275 17,931 (16,078 - 20,201) 

Italy 22nd March 2020 0 days 6,557 75,521 (64,229 - 91,630) 

Mexico 13th June 2020 0 days 5,222 55,661 (50,204 - 62,237) 

Peru 4th June 2020 0 days 24,603 24,603 (22,121 - 27,629) 

Russia 12th June 2020 4 days 11,656 15,604 (14,248 - 17¸270) 

Spain 27th March 2020 1 day 9,181 85,881 (77,697- 96,319) 

UK  12th April 2020 0 days 8,719 
100,870 (91,054 - 

112,639) 

USA 26th April 2020 21 days 48,529 
280,631 (226,097 - 

344,472) 
 
Table 1: Comparison between the confirmed and adjusted case numbers at their respective peaks 
for ten countries with the highest number of total confirmed cases and ten countries with the 
highest number of symptomatic cases after adjusting for under-ascertainment. Eight countries are 
in both lists, so the total is twelve distinct countries. We find that the peak of the case curves 
shifts when they are adjusted for under-ascertainment. Clearly, Mexico and Brazil haven’t 
necessarily peaked yet, given that they are not as far along their epidemic as the other countries. 
Therefore, for these countries, we simply report the date and number of the highest number of 
cases to-date. 
 
 
 
 
 
 
 
 



 
Supplementary Material 
 
Extended Methods 
 
Daily under-ascertainment calculation 
To calculate the level of under-ascertainment on a given day  in country , first we estimate a 
delay-adjusted number of cases with outcomes known by time ; . This delay-adjustment uses a 
discrete convolution correction method, accounting for all cases which to-date do not have known 
outcomes. Specifically, the correction term,  for the proportion of cases with known outcomes on 
day  is given by  
 

, 

where , the daily national case incidence and  the proportion of cases with known outcomes at 
time after confirmation. Specifically,  represents the probability density function between 
confirmation-to-death, discretised between time-points using whichever time-resolution the data is on 
- typically days. We use a hospitalisation-to-death distribution approximated by a lognormal 
distribution with a mean of 13 days (8.7 - 20.9 days) and standard deviation of 12.7 days (6.4 - 26 
days) (31) (see Table S3 for more details on this distribution and the other model parameters). 

Let  denote the level of ascertainment at each time in each country. An estimator for the proportion 
of symptomatic cases ascertained on a given day is: 
 

, 
 
where  is the baseline case fatality ratio and  is the delay-adjusted case 
fatality ratio in that time and country, given by the ratio of daily deaths  to cases for which the 
outcome (death or survival) would be known by that time. However this point-wise estimator does not 
enable robust estimation of time-varying ascertainment rates. 
 
Fitting temporal trend with a Gaussian process 
ascertained cases and the apparent ascertainment rate . Ie. the correction to the number of 
ascertained cases is applied in the model likelihood. We define the time-varying apparent 
ascertainment rates as: 
 

, 

, 
 
where  is a nonparametric function of time for country ,  are independent daily noise terms, 
and  is the inverse of the probit function, which maps function values to the unit interval - the 
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range of supported values of the ascertainment rate. We model  as a realisation of a univariate 
zero-mean Gaussian process: 
 

, 
 
with additive covariance function  given by the sum of two component covariance functions 
(implying summation of their resulting covariance matrices): , a ‘bias kernel’ modelling the 
average value of  over the whole period, and a squared exponential covariance function modelling 
temporal variation in ascertainment about that mean. These covariance functions are defined as: 

 

 , 

 . 
 
Note this summation of covariance functions is equivalent to defining  as the sum of a single 
squared exponential covariance function and an intercept term with zero-mean normal prior with 

variance . Whilst this compositional Gaussian process representation is uncommon outside the 
Gaussian process machine-learning literature, it is computationally more convenient since it 
marginalises out an intercept parameter that would otherwise be poorly identified and lead to a 
correlated posterior density that would be difficult to sample from. 
 
We consider that the Gaussian process represents the ‘signal’ in the apparent ascertainment rate; the 
true ascertainment rate , and that the independent Gaussian error reflects noise in the apparent 
ascertainment rate over time, capturing extra-Poisson stochasticity (akin to a Poisson-lognormal 
model of overdispersion) in the time series of reported deaths, such as clustering of reporting of 
deaths. We therefore estimate the time varying ascertainment as: 
 

 
 
We define the following prior distributions over the kernel and error parameters for each country: 
 

 
 
 

 
where  denotes a positive-truncated normal distribution, and we set the prior variance for the 
bias kernel (intercept term) to . 
 
Choice of priors 
 

The prior variance of 1 on the bias kernel (intercept term), ,  corresponds to a 
uniform prior on 0-1 for ascertainment holding the other components at zero (the probit link is the 
CDF of the standard normal, so a probit transformation of a standard normal yields a standard uniform 
distribution).  
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The half normal prior on the error variance,  , is a standard shrinkage prior that 
constrains the residual IID errors to 0, or small values in the absence of evidence to the contrary. 
 

The lognormal prior on the GP amplitude parameter, , does not shrink towards zero, since that 
would imply a prior assumption that there is no temporal correlation. Similarly, we use a lognormal 
prior on the lengthscale parameter, , since a prior mass close to zero implies very rapid changes in 
the ascertainment rate. The two lognormal priors were chosen manually to enable a wide range of 
‘shapes’ of the ascertainment rate, without leading to long periods of ascertainment at the boundaries 
(close to 1 or zero, since the probit links squishes large positive/negative values toward those). I.e. 
they were chosen to be minimally informative. 
 
Finally, we incorporate uncertainty around the assumed baseline CFR by treating it as a random 
variable with an informative prior. Specifically, we assume it is normally distributed with mean and 
SD matching the reported CIs (17), and truncated from 0% to 100%. 
 
Numerical procedure 
 
We fit the model by Hamiltonian Monte Carlo using the R packages greta and greta.gp (32). Each 
model was fitted with 500 independent MCMC chains (a computationally-efficient strategy to 
yielding large numbers of posterior samples) of 10000 samples each, after discarding an initial 1000 
samples per chain during a warm up period during which the sampler was tuned. Using these 500,000 
posterior samples, we estimated the posterior median of the posterior and 95% credible interval (CrI) 
for each time point (black filled line for median and blue shaded region for 95% CrI in Figure 1 and 
Figure S1). 
 
We assessed convergence of the chains using the Gelman–Rubin convergence diagnostic. 

Specifically, we tested whether  and whether  across all chains. Once 
these conditions were satisfied, we assumed convergence to the posterior. 
 
 
Data 
The input data for the model is a time-series of new cases and new deaths. The temporal and spatial 
resolution of the input data directly reflects the resolution of the resulting estimates. I.e. if the input 
data corresponds to the new cases and new deaths each day for a country, then we are able to estimate 
the under-ascertainment each day for that country. The spatial resolution is important for the accuracy 
of the estimates, given that some countries have highly heterogeneous population distributions, with 
concentrated outbreaks in large cities. We therefore use regional data, where it is available for direct 
comparisons with seroprevalence data (Figure 3) in such countries. We typically find that the 
accuracy of the estimates increases as the spatial resolution of the input data increases. Unfortunately 
regional data is not as easy to find from a centralised and regularly updated source. 
 
For the new cases and new deaths time-series data required as a model input, we use the publicly 
available data from the European Centre for Disease Control (found here: 
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid
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-19-cases-worldwide), which is updated daily. Countries must have had at least ten deaths, for longer 
than ten days, for their estimates to be computed. Fewer deaths, or for a few days (or both) results in 
spurious estimates with 95% credible intervals that typically range from 0-100% of the cases 
ascertained. 
 
Further details on methodology and limitations 
 
Baseline CFR 
We assumed the age-adjusted baseline CFR is 1.4% (95% CrI: 1.2% - 1.5%) (4), which is broadly 
consistent with other published estimates (5,25,26), and assumed a range of 10% - 70% of infections 
were asymptomatic (22,27–29) with a mean value of 50% (13). Given the uncertainty in these 
estimates, we propagated the variance in baseline CFR and range in proportion asymptomatic in the 
inference process so the final 95% credible interval reported for under-ascertainment reflects 
underlying uncertainty in the model parameters. We also assumed that deaths from COVID-19 are 
accurately reported. If local testing capacity is limited, or if testing policy affects attribution of deaths 
(for example, the evidence for the efficacy of post-mortem swabbing is lacking), deaths can be 
misattributed to a cause other than COVID-19. In that case, our model may underestimate the true 
burden of infection. However, our estimates were consistent with published serological data. Given 
that our estimates of under-ascertainment in many countries suggest that the numbers of symptomatic 
infections at the peak of the outbreak were an order of magnitude larger than reported cases, even if 
deaths are under-reported, our estimates are still likely to be much closer to the true burden than 
locally reported cases imply. Our estimates of under-ascertainment over time require a time-series of 
COVID-19 deaths as an input, a data source that may also exhibit reporting variation. One significant 
example of this was Spain during June 2020 (Figure S1). However, as our Gaussian process model 
quantifies time-varying case ascertainment, it is able to account for positive or negative spikes in 
reporting (14). Specifically, we are able to infer what are known as the inducing points of the 
temporal trends: the most likely times trends in the under-ascertainment estimates change qualitatively 
(see the Extended Methods section in the Supplementary Material for more details on the model 
fitting procedure). 

Assuming a fixed baseline CFR of 1.4% (95% CrI: 1.2% - 1.5%) means that we are not accounting for 
the differences in underlying age distributions between different countries. It is well-known that the 
severity of COVID-19 has a strong age-dependency (17). Therefore, it is likely that in countries with 
younger-skewed populations that we overestimate the ascertainment rate in such countries and vice 
versa in older-skewed countries. We have implemented an indirect age-adjusted baseline CFR for 
each country, but this comes with its own set of limitations. The main one being that the age-adjusted 
CFR results were able to be estimated as they assumed a flat attack rate across age-groups (17). In the 
absence of case and death time series input data stratified by age, we opted for the parsimonious 
method of a flat baseline CFR across all countries. To investigate the sensitivity of our methods to this 
flat CFR, we reproduced Figure 3 with the age-adjusted ascertainment estimates (Figure S7). 
 
Proportion of infections that are asymptomatic 
Adjusting for the true number of asymptomatic was performed by simply assuming a wide range, 
reflecting the still-present uncertainty in the literature of 10-70% of all infections. This proportion 
scales the adjusted case curves. The proportion of asymptomatic/pre-symptomatic infections has been 
estimated to also vary with age (33). Again, in the absence of age-stratified data globally, we opt for a 
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simple adjustment, which is equivalent across all settings. As more detailed data comes in, it would be 
possible to refine and improve the accuracy of the methods presented. 
 
 
Reporting caveats including under-reporting of deaths 
We use data on reported deaths, but these values may represent different events across different 
countries. For example, some countries did not initially report deaths from care homes (34). There 
have also been instances of data being retrospectively updated, such as when Spain recorded a 
negative value of -1918 deaths on the 26th May. Our methods account for this temporal variation by 
considering the using the Gaussian process to represent the ‘signal’ in the apparent ascertainment rate, 
capturing extra-Poisson stochasticity (akin to a Poisson-lognormal model of overdispersion) in the 
time series of reported deaths, such as clustering of reporting of deaths (See subsection Fitting 
temporal trend with a Gaussian process for more details). However, the large spike in the Spanish data 
was outside the range of routine modelled day-to-day variation and so the resulting CrI of our 
estimates were inconsistent with observed dynamics. We therefore only ran inference on data up until 
the 26th May and did not include later dates. A more detailed analysis on the Spanish dataset could 
redistribute the large negative number of deaths to surrounding days, such that the model could deal 
with the negative deaths more accurately. 
 
Time delay assumptions 
There are multiple time delays during the reporting process, from confirmation to hospitalisation to 
death (35). When estimating cumulative incidence within a country and presenting it as a percentage 
of the total population, we adjust the reported case curves for under-ascertainment and potential 
asymptomatic infections. In doing so, we are attempting to describe the number infected at point of 
infection rather than point of confirmation. To do so, we mean-shift the dates by the mean of the 
distribution between onset of symptoms and confirmation (19). The distribution has a mean of 9 days. 
Mean-shifting is a crude adjustment, with known errors. In doing so, we assume that reporting delays 
are static over-time and equivalent for all countries. Given that we are performing analysis globally, 
other more complex methods were not opted for as they would have incurred substantial 
computational costs on top of the computationally intensive Gaussian process framework. Further, 
between-country variation in delays until confirmation would need to be considered if a more detailed 
approach were taken, which would require more detailed data than is known to exist for most 
countries. However, as we only report infection time as cumulative incidence, a substantial portion of 
the individual variation in infection time would not be reflected in the incidence, as only the dates 
which truly occurred before the mean of the delay distribution would be incorrect (those occurring 
after the mean of the distribution would already be included in the cumulative count). More accurate 
estimation may be possible with good progress made attempting to solve imputing infection dates 
from date-of-confirmation data (36). Such methods were motivated by Gostic et al. (35) and are able 
to accurately reconstruct the true infection curves, validated against simulated data.  
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Supplementary Figures 
 

 
Figure S1: Temporal variation in under-reporting for all countries with greater than 10 deaths for 
more than 50 days. 
 
 
 
 
 
 
 
 
 



 

Figure S2: Temporal variation in testing effort for all countries there was data for in the Our 
World In Data database (18). 
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Figure S3: the relationship between case ascertainment and testing effort. We define testing effort 
as the 7-day moving average of the number of new tests per new cases each day. We plot the 
under-ascertainment estimates along with the testing effort estimates for all countries we have 
both data for. We then fit, using a loess curve to highlight the positive but weak relationship 
($$\tau = 0.16$$, where $$\tau$$ is Kendall’s rank coefficient). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
Figure S4: Temporal variation in under-ascertainment and testing effort for the nine countries 
with the maximum total cases that we have reliable testing effort estimates for. This figure differs 
from Figure 1 as the results are computed using the indirectly age-adjusted baseline CFR for 
each country. 
 
 
 
 
 
 



 
Figure S5: Confirmed case curves adjusted for temporal under-ascertainment adjusted indirectly 
for age. The results are similar to those in Figure 2 but have been computed using an indirectly 
age-adjusted baseline CFR for each country. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Figure S6: Estimated infection prevalence curves compared with observed seroprevalence data. 
The results are similar to those in Figure 3 but have been computed using an indirectly 
age-adjusted baseline CFR for each country. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

 
Figure S7: : Temporal variation in under-reporting for all countries with greater than 10 deaths 
for more than 50 days. The results are similar to those in Figure S1 but have been computed 
using an indirectly age-adjusted baseline CFR for each country. 
 
 
 
 
 
 



Country 

Samplin
g end 
date 

Percentage positive 
(95% CI) Source 

Andorra 13th May 8.5% (8.3% - 8.7%) 
Martinez Benazet agraeix a institucions, voluntaris ia la població que ha 
participat en l'estudi nacional d'anticossos 

Belgium 10th May 8.4% (6.6% - 11%) 
COVID-19 – WEKELIJKS EPIDEMIOLOGISCH BULLETIN VAN 
29 MEI 2020 INHOUDSTAFEL 

Belgium 19th May 4.7% (3.4% - 6.3%) 
COVID-19 – WEKELIJKS EPIDEMIOLOGISCH BULLETIN VAN 
29 MEI 2020 INHOUDSTAFEL 

Brazil 13th Apr 0.1% (0.01% - 0.17%) Apresentação do PowerPoint 

Brazil 27th Apr 0.1% (0.05% - 0.29%) Apresentação do PowerPoint 

Brazil 11th May 0.2% (0.27% - 0.69%) Apresentação do PowerPoint 

Brazil 21st May 1.4% (1.2% - 1.5%) 
Remarkable variability in SARS-CoV-2 antibodies across Brazilian 
regions: nationwide serological household survey in 27 states 

Czech 
Republic 1st May 0.4% (0.33$ - 0.49%) 

https://koronavirus.mzcr.cz/infekce-covid-19-prosla-ceskou-populaci-v
elmi-mirne-podobne-jako-v-okolnich-zemich/ 

Denmark 8th Apr 1.5% (1.1% - 1.9%) 
Estimation of SARS-CoV-2 infection fatality rate by real-time antibody 
screening of blood donors 

Denmark 27th Apr 1.1% (0.58% - 1.9%) 
Notat: Foreløbige resultater fra den repræsentative 
seroprævalensundersøgelse af COVID-19. Den 20. maj 2020 

Finland 10th May 1.6% (0.67% - 3.0%) Koronaepidemian väestöserologiatutkimuksen viikkoraportti 

Finland 17th May 1.2% (0.33% - 3.1%) Koronaepidemian väestöserologiatutkimuksen viikkoraportti 

Luxembour
g 5th May 1.9% (1.3% - 2.7%) 

Prevalence of SARS-CoV-2 infection in the Luxembourgish 
population: the CON-VINCE study. 

Netherlands 17th Apr 3.6% (2.8% - 4.5%) Children and COVID-19 

Norway 30th Apr 2% 0.87% - 3.9%) Truleg berre ein liten andel som har vore smitta av koronavirus i Noreg 

Spain 27 Apr 5.5% (3.2% - 8.6%) 
Primer estudi que revela la protecció de la nostra població davant del 
coronavirus 

Spain 11 May 5% (4.8% - 5.2%) Consumo y Bienestar Social - Gabinete de Prensa - Notas de Prensa 

Spain 1 Jun 5.2% (5.0% - 5.4%) ESTUDIO ENE-COVID19: SEGUNDA RONDA 

Sweden 3 May 7.3% (5.9% - 9.0%) 
Första resultaten från pågående undersökning av antikroppar för 
covid-19-virus 

UK 24 May 6.78% (5.2% - 8.6%) Coronavirus (COVID-19) Infection Survey pilot 
Table S1: A summary of the country-level serological studies we used for comparison against our 
model estimates. 
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Country City or region 
Sampling end 

date 
Percentage positive 

(95% CI) Source 

UK East of England 2020-05-10 10% (8.2% - 12%) Sero-surveillance of COVID-19 - GOV.UK 

UK London 2020-03-29 
1.5% (0.84% - 
2.5%) Sero-surveillance of COVID-19 - GOV.UK 

UK London 2020-04-19 12.3% (10% - 14%) Sero-surveillance of COVID-19 - GOV.UK 

UK London 2020-05-03 17.5% (15% - 20%) Sero-surveillance of COVID-19 - GOV.UK 

UK Midlands 2020-04-05 
1.5% (0.02% - 
0.72% Sero-surveillance of COVID-19 - GOV.UK 

UK Midlands 2020-04-26 8% (6.4% - 9.9%) Sero-surveillance of COVID-19 - GOV.UK 

UK North East 2020-04-19 4.2% (3.0% - 5.6%) Sero-surveillance of COVID-19 - GOV.UK 

UK North West 2020-05-10 12% (10% - 14%) Sero-surveillance of COVID-19 - GOV.UK 

UK North West 2020-04-19 6.4% (5.0% - 8.1%) Sero-surveillance of COVID-19 - GOV.UK 

UK South East 2020-05-03 4.2% (3.0% - 5.6%) Sero-surveillance of COVID-19 - GOV.UK 

UK South West 2020-04-26 4.9% (3.6% - 6.4%) Sero-surveillance of COVID-19 - GOV.UK 

Switzerland Geneva 2020-04-10 3.2% (1.6% - 5.7%) 

Repeated seroprevalence of 
anti-SARS-CoV-2 IgG antibodies in a 
population-based sample from Geneva, 
Switzerland 

Switzerland Geneva 2020-04-17 6.1% (3.9% - 8.7%) 
https://www.medrxiv.org/content/10.1101/20
20.05.02.20088898v1.full.pdf 

Switzerland Geneva 2020-04-26 9.7% (7.4% - 12%) 

Repeated seroprevalence of 
anti-SARS-CoV-2 IgG antibodies in a 
population-based sample from Geneva, 
Switzerland 

USA New York State 2020-04-28 12.5% (12% - 13%) 
Cumulative incidence and diagnosis of 
SARS-CoV-2 infection in New York 

 
Table S2: A summary of the city-level or regional-level serological studies we used for comparison 
against our model estimates. 
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Parameter Description 

Value (95% CI or CrI if 
applicable) or prior 

specification 
Literature source (if 

applicable) 

 Number of new cases on day  N/A ECDC website (37) 

 Number of new deaths on day  N/A ECDC website (37) 

 
The proportion of cases ascertained on day

 N/A N/A 

 
Discretised probability density of death on 

day  
Mean: 13 days (8.7 - 20.9) 
SD: 12.7 days (6.4 - 21.8) Linton et al. (2020) (31) 

 The assumed baseline CFR 1.4% (1.2% - 1.5%) Verity et al. (2020) (17) 

 The country specific delay-adjusted CFR N/A N/A 

 Bias term in kernel of GP  N/A 

 Error variance term in GP  N/A 

 GP amplitude parameter  N/A 

 Lengthscale parameter  N/A 
 
Table S3: A summary of the parameters, distributions and output quantities either as inputs or 
outputs of our under-ascertainment model 
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