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Summary 
To mitigate SARS-CoV-2 transmission risks from international travellers, many countries currently use a 
combination of up to 14 days of self-quarantine on arrival and testing for active infection. We used a 
simulation model of air travellers arriving to the UK from the EU or the USA and the timing of their stages 
of infection to evaluate the ability of these strategies to reduce the risk of seeding community transmission. 
We find that a quarantine period of 8 days on arrival with a PCR test on day 7 (with a 1-day delay for test 
results) can reduce the number of infectious arrivals released into the community by a median 94% compared 
to a no quarantine, no test scenario. This reduction is similar to that achieved by a 14-day quarantine period 
(median 99% reduction). Shorter quarantine periods still can prevent a substantial amount of transmission; 
all strategies in which travellers spend at least 5 days (the mean incubation period) in quarantine and have at 
least one negative test before release are highly effective (e.g. a test on day 5 with release on day 6 results in a 
median 88% reduction in transmission potential). Without intervention, the current high prevalence in the 



US (40 per 10,000) results in a higher expected number of infectious arrivals per week (up to 23) compared 
to the EU (up to 12), despite an estimated 8 times lower volume of travel in July 2020. 
 
Requiring a 14-day quarantine period likely results in less than 1 infectious traveller each entering the UK per 
week from the EU and the USA (97.5th percentile). We also find that on arrival the transmission risk is highest 
from pre-symptomatic travellers; quarantine policies will shift this risk increasingly towards asymptomatic 
infections if eventually-symptomatic individuals self-isolate after the onset of symptoms. As passenger 
numbers recover, strategies to reduce the risk of re-introduction should be evaluated in the context of 
domestic SARS-CoV-2 incidence, preparedness to manage new outbreaks, and the economic and 
psychological impacts of quarantine. 

Background 
With the introduction of non-pharmaceutical interventions (NPIs) such as physical distancing measures, 
many countries around the world have managed to curb local SARS-CoV-2 transmission and reduce the 
incidence of COVID-19 to sporadic cases and localised outbreaks. Under these circumstances, limiting re-
introduction of infections from other countries becomes increasingly important in order to prevent 
additional outbreaks and avoid overwhelming resource-intensive control efforts. 
 
The current guideline in a number of countries is self-quarantine of new arrivals either at their home, with 
family or friends, or hotels or other temporary accommodation for 14 days (1). It is expected that by day 14 
at least 95% of eventually symptomatic cases have become symptomatic (2). However, the median incubation 
period for SARS-CoV-2 is about 5 days (2) and, assuming that travellers are equally likely to travel at any 
point in that period, a 5-day quarantine on arrival should suffice to allow more than 50% of the infections to 
develop symptoms and be managed accordingly. Quarantine, either at home or at managed facilities, may lead 
to negative psychological effects stemming from social isolation (3,4) and financial stress (5). In addition, the 
continued application of COVID-19 related travel restrictions, including quarantine, is likely to significantly 
impact economies reliant on tourist and business travel. On 7 May 2020 the United Nations World Tourism 
Organisation estimated that up to 80% of the USD1.7tn global earnings from tourism in 2019 may be lost in 
2020, along with 120m jobs (6). In an IATA survey, quarantine was cited as the primary reason for reluctance 
to travel (85%), along with fear of becoming infected (84%), with 17% of respondents unwilling to undergo 
quarantine (7). Therefore, the anticipated personal, social and economic costs of extended quarantine must 
be justified by the reduction in transmission risk. 
 
As well as quarantine, some countries have introduced a requirement for travellers to undergo testing for 
SARS-CoV-2 infection with Reverse Transcription Polymerase Chain Reaction (RT-PCR, hereafter PCR). 
Such testing is, commonly, performed by taking nasopharyngeal or throat swabs (NTS) of individuals and 
analysing the resulting sample for the presence of SARS-CoV-2 RNA (8). PCR screening may be conducted 
prior to the flight and/or upon arrival to allow detection of infected travellers on entry. Since 3 June 2020, 
Singapore has required visitors from China to take a PCR test no greater than 48-hours before departure, 
with a certificate of their infection-free status required for entry, and an additional test upon arrival (9). A 
similar policy is in place in Hong Kong (10); travellers who test positive on arrival are transferred to hospital, 
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while those who test negative enter a compulsory 14 day quarantine period at home or hotel, and in a managed 
quarantine facility if they returned from perceived high-risk areas (11). In some countries, the testing strategy 
is also used to allow shortened or no quarantine for those without a confirmed infection. For example, Japan 
allows for business travellers from designated low-risk countries such as Australia, New Zealand, Thailand 
and Vietnam to skip the 14-day quarantine period if they test negative upon arrival (12). However, testing 
every arriving traveller introduces logistical constraints that may limit the possible traveller volume; e.g. Japan 
only allows 250 arriving travellers per day as of early June 2020 (13). As such, understanding the effectiveness 
of such strategies to limit the risk of re-introduction of SARS-CoV-2 is of vital importance. 
 
Here we investigate a number of strategies targeting arriving travellers, including a combination of quarantine 
and screening for active infection. We consider the effectiveness of each strategy in reducing the number of 
infectious travellers who enter into the community and their remaining infectious duration. 

Methods 
The travel screening outcomes for travellers are as follows: (i) prevented from travelling due to either 
syndromic screening at the airport or a positive pre-flight PCR test; (ii) released after the mandatory isolation 
period following either a positive PCR test at entry or a follow-up positive PCR test after a negative one at 
entry; (iii) released after a second negative test during the isolation period; (iv) In the absence of post-entry 
testing, travellers will either be free to enter immediately or be released after the mandatory isolation period 
(Figure 1). 
 

 
Figure 1 - Possible traveller trajectories for the considered screening scenarios. Screening (purple diamonds) occurs pre-flight and/or 
post-flight and may include managed quarantine periods (yellow boxes). Travellers found to be infected pre-flight are prevented from 
boarding (orange boxes pre-flight); travellers found to be infected during managed quarantine are diverted to mandatory quarantine 
(orange boxes post-flight). Travellers enter the community after the required number of negative tests (regardless of infection status) 
or after meeting the requirements of the mandatory quarantine. 

Number of infected travellers 
We simulated the number of infected air travellers intending to fly to a destination country in a given week 
based on the monthly volume of flights between origin and destination and the prevalence of COVID-19 in 
the origin country (Table 1). We used the United Kingdom of Great Britain and Northern Ireland (UK) as a 
case study for the destination country. We assumed that the inbound and outbound travel is balanced on 
average and halved the total number of monthly traveller movements, 𝑛, to estimate the number travelling 
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into the UK. We sample the number of weekly arrivals, 𝑊, from a binomial distribution 𝑊 ∼ 𝐵𝑖𝑛(𝑝 =

7/30, ⌈𝑛/2⌉). 
 
Table 1: Traveller movements in June 2019 and year on year change for May 2020 compared to May 2019 between UK airports, and 
airports in the European Union (EU) and United States of America (USA). Source: Civil Aviation Authority Tables 10.1 and 12.1 
for July 2019 (14), May 2019 (14) and May 2020 (15). 

 EU USA Source 

Total traveller volume July 2019 18,186,680 2,249,856 (14) 

Year-on-year change for April and 
May 2020 compared to April and May 
2019, % 

-99% -99% (15) 
EU: Table 10.1 

USA: Table 12.1 

Calculated total traveller volume July 
2020 using May year-on-year change, 
𝑛 

181,187   22,499 (14,15) 
EU: Table 10.1 

USA: Table 12.1 

Duration of typical flight (hours) 2 8 Assumed 

Prevalence of SARS-CoV-2 on 20 July 
2020 

2.8 per 10,000 40.0 per 10,000 (16) 

Number of infected individuals 
intending to travel in a given week. 
Median and 95% interval from 1000 
simulations. 

Symptomatic: 
 4 (1, 10) 

Asymptomatic: 
1 (0, 5) 

Symptomatic: 
8 (2, 21) 

Asymptomatic: 
2 (0, 10) 

Proportion 
asymptomatic derived 

from (17) 

 
 
The time of each intending traveller’s flight was sampled uniformly between the time of their exposure to 
SARS-CoV-2 and their time of recovery. We assume that for the simulated travel scenarios, 70% of travellers 
who were symptomatic at their intended departure time were either prevented from travelling or chose not 
to travel (based on results from Figure 2 of Gostic et al. (2020) (18)). We modelled international travellers 
coming either from the European Union (EU) or the United States of America (USA), using publicly-
available Civil Aviation Authority data for April and May 2020, which indicates that traveller volume was 
approximately 99% lower compared to the same period in 2019 (Table 1). The traveller volumes in July 2020 
are therefore assumed to be approximately 1% of those in July 2019. Estimates of current COVID-19 
infection prevalence were derived from reported cases and death time series data while adjusting for reporting 
delays and underreporting based on case-fatality ratio estimates (16,19). EU-wide prevalence was calculated 
as a population-weighted mean of available country-level estimates of the non-UK EU countries (except 
Malta, for which a prevalence estimate was not available). We assumed that 3-55% of infected intending 
travellers were asymptomatic (17). 
 
We assume that the observed weekly travel volume, here, 𝑊, is those who have not been screened out or self-
selected out based on onset of symptoms, i.e. the sum of the number of uninfected, asymptomatic, and those 
ever-symptomatic travellers not currently symptomatic. The total number of intending travellers, 𝑊′, is 𝑊, 
plus those who do not travel, 𝛿𝑊. We calculate 𝑊′ as follows. First, sample 𝑊 ∼ 𝐵𝑖𝑛(𝑝 = 7/30, ⌈𝑛/2⌉). 
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For 𝛼, the proportion of infections which are asymptomatic, 𝜋, the prevalence at the travel origin, 𝜉, the 
proportion of ever-symptomatic cases who are symptomatic at intended time of departure, and 𝜌, the 
proportion of currently symptomatic travellers prevented from boarding, 𝛿𝑊 is distributed according to a 
negative binomial distribution with size 𝑊 and 𝑝 = 1 − 𝜋(1 − 𝛼)𝜌𝜉. 𝜉is estimated by sampling a large 
number of ever-symptomatic travellers, along with flight departure times and symptomatic periods and 
determining which proportion are symptomatic at time of intended departure. 
 
The number of uninfected travellers, 𝑆, is then 𝑆 ∼ 𝐵𝑖𝑛(1 − 𝜋,𝑊 + 𝛿𝑊); the number of asymptomatic 
infected travellers is 𝐼𝑎 ∼ 𝐵𝑖𝑛(𝛼,𝑊 + 𝛿𝑊 − 𝑆); the number of travellers symptomatic at time of departure 
is 𝐼𝑠 ∼ 𝐵𝑖𝑛(𝜉,𝑊 + 𝛿𝑊 − 𝑆 − 𝐼𝑎)and the number of ever-symptomatic travellers who are permitted to 
travel is therefore 𝑊+ 𝛿𝑊 − 𝑆 − 𝐼𝑎 − 𝐼𝑠and is composed of those who are not yet symptomatic, those who 
are post-symptomatic, and those who are symptomatic but not detected by syndromic screening. 

Risk mitigation strategies 
We considered several risk mitigation scenarios representing “low”, “moderate” and “high” levels of 
stringency, as well as that of a mandatory 14-day quarantine period (“maximum”) (Table 2, Figure 1). “High” 
was further stratified into multiple rounds of PCR testing: pre-flight, post-flight, and follow-up. 
 
Table 2 - Strategies for risk mitigation. Where one of the described lines contains “or”, we consider all combinations contained within. 
For all levels of stringency we consider scenarios with the following pre-flight PCR policies: no pre-flight testing, pre-flight testing 
within 1 day of departure, within 4 days of departure, or within 1 week of departure. 

Stringency of 
screening policy*  

Description of screening policy 

Low 01. No mandatory quarantine on arrival, and  
02. Either no post-flight testing, or a single PCR test on arrival. 
03. Release immediately after arrival (no test) or on receipt of negative result (test). 

We consider a no-quarantine, no-testing scenario as the primary baseline for comparison. 

Moderate 01. Mandatory 3, 5 or 7 days quarantine on arrival, and 
02. Either no post-flight testing or a single PCR test at end of mandatory 

quarantine  
03. Release at end of mandatory quarantine period (no test) or on receipt of 

negative test at end of mandatory quarantine period. 

High  01. Mandatory quarantine on arrival, and 
02. A first PCR test 0, 1 or 2 days after arrival, and 
03. A second PCR test either 2, 4 or 6 days after the first 
04. Release after two negative post-arrival results or 14 days after earliest positive 

post-arrival test. 

Maximum 01. Mandatory 14 days quarantine on arrival 
02. Either no post-flight testing or a single PCR test at end of mandatory 

quarantine 
03. Release at end of mandatory quarantine period (no test) or on receipt of 

negative test at end of mandatory quarantine period. 

* In all scenarios we assumed that syndromic screening is implemented at the departure airport, hence low stringency rather than no stringency. 



 
We assume that syndromic screening is performed prior to departure which may consist of thermal scanning 
and/or monitoring of symptoms such as cough and fever (20). Given the awareness of the pandemic and 
guidance issued on travelling while ill, we assume in all scenarios that 70% of currently-symptomatic travellers 
do not fly. This value, effectively a sensitivity of pre-flight syndromic screening for eventually symptomatic 
infections (Table 1), is derived from the post-incubation model results in Figure 2 of (18,21), adjusting the 
asymptomatic fraction to 0%.  
 
Pre-flight PCR testing is required by some countries and airlines. Travellers must obtain a negative test result 
in a specific window prior to the flight’s departure. The IATA recommends testing within 24 hours before 
departure (22) but some countries require testing within the last seven days pre-flight (23). We consider pre-
travel PCR at these two extremes and include a 4-day pre-flight test in order to provide a midpoint that 
demonstrates the transition between these extremes. 
 
Travellers are subjected to a quarantine which lasts either zero (low stringency), 3, 5, or 7 (moderate 
stringency), or 14 (high and maximum stringency) days (Table 2). In all but the high level of stringency, 
travellers may also be tested on the final day of their quarantine (in the low stringency setting, this effectively 
enforces a one-day quarantine). At maximum stringency, the 14-day quarantine period aims to ensure that 
even a traveller who was infected just before or during the flight would likely spend their whole infectious 
period in quarantine and thereby not infect others. The moderately stringent strategy, on the other hand, 
aims to ensure that travellers spend a sufficient amount of time in quarantine to allow for the development 
of symptoms and probability of a positive PCR test leading to isolation for those infected. These strategies 
would, however, risk that some asymptomatically infected travellers (that is, infected travellers who will never 
display symptoms) will enter the community before the end of their infectious period. For the high stringency 
scenario, travellers are assumed to pass through multiple stages of PCR testing; if they test positive in either 
the immediate post-flight or follow-up testing, they will enter a mandatory isolation period, with positive pre-
flight tests preventing an individual from flying altogether (we assume such travellers will defer their travel 
until they are cleared to fly). Travellers in the high stringency scenario will be cleared to leave quarantine upon 
receiving 2 negative tests during their post-arrival quarantine period, leaving quarantine the day after their 
final test to account for test delays of up to one day (24).   

Detection model 
The time-varying PCR sensitivity function is the probability of an infected traveller testing positive by 
nasopharyngeal or throat swab (NTS) PCR on a given day, 𝑃(𝑡). This is modelled as a function of the time 
since their exposure (Figure 1, Kucirka et al. 2020 (25)) fitting a Generalised Additive Model (GAM), with a 
Binomial likelihood and penalised B-spline basis (P-spline) (26), to the data collected by Kucirka et al. (2020) 
(25). We shift the observations, as they have, by an incubation period of 5 days (27), and augment by a pseudo-
negative test on day 0 for each of the constituent data sets. We assumed that test specificity is 100% (28). We 
assumed that the probability of detecting an asymptomatic infection through PCR testing is 0.62 times that 
of a symptomatic individual’s infection, as reported by Chau et al. for NTS samples collected from 
quarantining travellers (29) (Table 3). The proportion of asymptomatic simulated travellers was derived by 
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quantile matching the prediction interval of Buitrago-Garcia et al. (2020) as a Beta distribution with 95% 
interval (0.03, 0.55) (17). 
 
Table 3 - Values of parameters in simulation of travellers’ infection histories and PCR testing. Gamma distributions are parameterised 

in terms of a mean and variance, 𝛤(𝜇, 𝜎2), and these are converted to shape and rate parameters via moment matching. Where 
quantiles are given but no distribution described, the parameter is derived from other distributions in the table and has no closed-
form. 

Model parameter Description Value Source 

Incubation period (days) Time from exposure to 
onset of symptoms.  

𝛤(𝜇 = 5.5, 𝜎2 = 6.5) 
Median: 5.1 days 
IQR: (3.6, 6.9) days 
95%: (1.7, 11.5) days 

Derived from 
quantile matching 
with Median: 5.1 
days, 97.5%: 11.5 
days (27) 

Time to infectiousness 
(symptomatic cases) 

Time after exposure (and 
before onset of symptoms) 
from which pre-
symptomatic transmission 
can occur. 

Median: 3.4 days 
IQR: (2.3, 4.9) days 
95%: (0.9, 8.6) days 

Derived from (30) 

Infectious period 
(symptomatic cases, days) 

Duration of period in 
which case is able to infect 
others  

Median: 7.1 days 
IQR: (5.7, 8.5) days 
95%: (2.5, 11.6) days 

Derived from (31) 

Symptomatic period 
(symptomatic cases, days) 

Time after onset of 
symptoms until no longer 
symptomatic 

𝛤(𝜇 = 9.1, 𝜎2 = 14.7) 
Median: 8.6 days 
IQR: (6.3, 11.3) days 
95%: (3.2, 18.0) days 

Derivation from 
(20) based on 
moment 
matching 
distributions in 
(2)  

Fraction of currently 
symptomatic travellers, 𝜉 

Proportion of ever-
symptomatic infections 
symptomatic at intended 
departure time 

0.44 Derived from 
simulation of 
travellers 

Syndromic screening 
detection rate, 𝜌 

Proportion of 
symptomatic individuals 
intending to travel who are 
either screened out at 
point of departure or self-
select out of travelling 

0.7 Derived from (18) 

Infectious period 
(asymptomatic cases, days) 

Duration of period in 
which case is able to infect 
others 

𝛤(𝜇 = 6, 𝜎2 = 12) 
Median: 5.3 days 
IQR: (3.5, 7.8) days 
95%: (1.2, 14.4) days 

Assumption based 
on (32) 

PCR sensitivity for 
symptomatic infections 

Probability of testing PCR 
positive t days after 

𝑃(𝑡) Penalised B-spline 
fit to data in (25) 
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(Figure 2a) infection, if infection is 
symptomatic 

PCR specificity Probability of a negative 
PCR test given no 
infection with SARS-CoV-
2. 

1 Assumption 
consistent with 
(28) 

Asymptomatic fraction, 𝛼 Proportion of infections 
which are asymptomatic. 

𝐵𝑒𝑡𝑎(1.9, 6.3) 
Median: 0.21 
IQR: (0.12, 0.32)  
95%: (0.03, 0.55) 

Derived from 
quantile 
matching, 95%: 
(0.03, 0.55) (17) 

PCR sensitivity for 
asymptomatic infections 

Probability of testing PCR 
positive t days after 
infection, if infection is 
asymptomatic 

0.62𝑃(𝑡) Scaling factor 
derived from (29) 

 
Times to onset of symptoms, relevant for syndromic screening at point of departure, were sampled from 
Lauer et al. (2020) (27). We assume the same latent period for both symptomatic and asymptomatic cases 
(33), obtaining the parameters of the distribution by matching the median and 97.5% quantile of (27). 
Asymptomatic cases were assumed to have a mean of 6 days of infectiousness and a variance of 12 days, in line 
with the recommendations of Byrne et al. (2020) who discuss the difficulty in accurately characterising this 
period (32). 
 
According to He et al. (2020) infectiousness of symptomatic cases begins 2.3 days (95%: (0.8, 3.0) days) prior 
to the onset of symptoms (30,34). We sampled this pre-symptomatic infectious period duration to derive the 
time from exposure to infectiousness by matching the quantiles of the distribution of time to onset of 
symptoms to the quantiles of the distribution of infectiousness lead times for each traveller, preserving order, 
ensuring that no time to infectiousness occurs before exposure. The duration of the infectious period for 
symptomatic cases was derived from the data of Wölfel et al. (2020) (31) by fitting a Binomial GAM with P-
splines to determine the probability of no longer being infectious as a function of days since onset of 
symptoms. The time to non-infectiousness is sampled from the fitted GAM, which has range (0,1), by the 
inverse transform method (35). 
 
The symptomatic period (defined by symptoms, sampled from a distribution derived by the authors in earlier 
work (20)) may differ from the infectious period (defined by viral load) and so we assume that the 
combination of syndromic screening and PCR testing will be more effective than either alone. Some travellers 
will be PCR-positive beyond their infectious period (29). Those testing positive on day 14 of the maximum 
stringency setting are quarantined for an additional 14 days. In line with current UK government guidance 
(1). Travellers who become symptomatic during their quarantine period must meet all of the following 
conditions prior to their release: they must no longer display symptoms; it must be at least seven days since 
the onset of symptoms; and they must have been in quarantine for at least 14 days. Persons later in their 
infection than the sum of the sampled (derived) exposure to infectiousness and duration of infectiousness 
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were considered non-infectious and, hence, recovered, although they may still test positive under PCR 
(29,31). 
 
 

 
Figure 2 - A. Traveller PCR sensitivity curves, obtained by fitting a Binomial GAM to the data collated in Kucirka et al. (2020) (25) 
The mean fit is used as the time-varying sensitivity function, 𝑃(𝑡), and hence no uncertainty is shown in the figure. B. Distributions 
of times to clinically relevant events, namely time from exposure to start and end, and duration, of symptoms for symptomatic 
infections, and infectiousness for both symptomatic and asymptomatic infections. Times greater than 30 days are collapsed to a single 
“30+” bin. 
 

We are therefore primarily interested in the number of individuals still in their infectious or pre-infectious 
period who are free to enter the UK in each of the scenarios, and report this quantity for the time spent in 
quarantine in each scenario.  
 
In addition, we calculate the number of remaining infectious days for each infected traveller after their release 
from quarantine, reflecting the potential for onward transmission in the community. We report both the 
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incidence per 10,000 and estimated weekly travellers based on travel volumes, with 1000 bootstraps 
replications each to generate medians and 95% and 50% uncertainty intervals. In addition, we calculate rate 
ratios in each screening scenario for the number of infectious persons released and infectious days remaining 
compared to the low scenario with syndromic screening, no quarantine, and no PCR testing (Figure 4). Rate 
ratios were calculated with 100,000 travellers per simulation to avoid small number biases and bootstrapped 
500 times to generate medians and 95% and 50% uncertainty intervals. In the Supplementary Appendix we 
also include the total number of infectious person-days remaining (days remaining summed across still-
infectious arrivals released). 
 
All analysis was conducted in R version 4.0.2 (36);  a link to the project Github repository can be found in 
the Supplementary Appendix. 
 

Results 
Based on the prevalence of COVID-19 in the respective countries on 20 July 2020, we expect that the 
proportion of travellers who enter the UK infectious is substantially higher for flights originating in the USA 
than for those originating in the EU (Figure S1). However, as the prevalence of COVID-19 in the USA was 
approximately 14 times that in the EU in July 2020 and travel volumes were approximately 8 times lower than 
those in the EU, we expect approximately half the number of infectious arrivals from the EU than from the 
USA (Table 1). As a baseline for comparison, we use the lowest stringency scenario considered: 70% of 
currently symptomatic travellers are prevented from boarding, but no quarantine or testing is conducted. In 
this scenario, between 2 and 12 (EU), and 3 and 24 (USA) infectious travellers would enter the community 
(Figure 3A, low, no testing). By introducing a mandatory quarantine period of 7 days, this can be reduced to 
0 to 3 infectious persons per week from the EU and 0 to 4 from the USA (Figure 3A, Mod.), preventing 
approximately 80% of travellers from entering the community while being infectious (Rate Ratios, median 
and 95% UI: EU: 0.18 (0.00, 0.42), USA: 0.18 (0.10, 0.27)) (Figure 4A). A mandatory quarantine period of 
14 days resulted in 0 to 1 infectious entries per week each from the EU and USA (Figure 3A, Max.), an almost 
completely effective reduction (RR: EU: 0.00 (0.00, 0.01), USA: 0.01 (0.00, 0.04)) (Figure 4A).  
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Figure 3 - A. Expected number of infectious and pre-infectious persons free to enter the UK from the EU and USA based on observed 
travel volumes in each of the scenarios and how long they spend in quarantine before release, with no pre-flight testing. B. Per-
individual days of infectiousness remaining after release, based on observed travel volumes. Scenarios with no testing are denoted by 
orange bars; single tests with purple bars, and two tests with blue bars. We assume that test results are delayed by 1 day and hence 
persons leave quarantine 1 day after their second test. Central bar = median; light bar = 95% uncertainty interval; dark bar = 50% 
uncertainty interval. 



 
Longer mandatory quarantine periods resulted not only in fewer infectious travellers being released into the 
community but also that those who were released would be at a later stage of their infectious period, with 
reduced potential for onward transmission. We measured this as, per-individual days of remaining infectivity 
(Figure 3B). Furthermore, longer quarantine periods increase the fraction of pre-symptomatic infected 
travellers who would have their onset of symptoms during the quarantine and hence would go into self-
isolation. Accordingly, we estimated a more pronounced impact of traveller interventions on the number of 
infectious person-days from travellers, particularly for those who would eventually become symptomatic. 
The lowest stringency scenario, syndromic screening at origin and no PCR screening resulted in travellers 
from the EU having respectively 2.1 days (95% UI: (0, 11.2) days) of remaining infection and those from the 
USA having 2.2 days remaining (95% UI: (0.1, 11.3) days). Compared to only syndromic screening, a 7-day 
quarantine period reduced the number of remaining infectious days from travellers from the EU to a median 
of 0 days (mean: 1.4 days; 95% UI: (0.00, 8.7) days), a RR of 0.34 (95% UI: (0.01, 1)) and from the USA to 
1.0 days (mean: 2.1 days; 95% UI: (0.00, 9.8) days), a RR of 0.33 (95% UI: (0.02, 1)). A maximally stringent 
14-day quarantine reduces the median number of remaining infectious days for travellers to 0 from the EU 
(mean: 0.1 days; 95% UI: (0, 2.1) days) and 0 from the USA (mean: 0.3 days; 95% UI: (0, 3.6) days) (Figure 
3B), with RRs of, respectively, 0.15 (95% UI: 0.01, 0.56) and 0.15 (95% UI: 0.01, 0.57) (Figure 4B). 
 
Conducting a single test for all travellers at the end of the above quarantine periods further reduced the 
median number of infectious entries from the EU with RRs of 0.06 (95% UI: 0.02, 0.12)  (test on day 7, 
release on day 8) and 0.01 (95% UI: 0.00, 0.03) (test on day 14, release on day 15) compared to the lowest 
stringency scenario, with similar reductions for US travellers (Figure 4A, Moderate and Max., purple). While 
a single test decreased the number of infectious entries, compared to quarantine alone the medians remained 
unchanged at 0 and the upper bounds of the 95% UI were reduced to 6.2 days (EU) and 7.7 days (USA), 
reflecting those still in their infectious period at the end of quarantine were more likely to be diverted to 
mandatory isolation.  
 
Requiring a second round of testing in addition to quarantine and a single test had little marginal impact, 
although a quarantine period of over 8 days with two tests may be able to largely replicate the impact of a 14-
day quarantine period (Fig 4B). For the same total time in quarantine in the High stringency scenarios, 
delaying the first test and reducing the time until the second test leads to the same median number of released 
infectious arrivals but reduces the 97.5th percentile, making the scenario more consistent. This effect is more 
pronounced when comparing a two-test scenario to a one-test scenario of equivalent duration (Figure S1A, 
Mod.). 
 
The additional impact of pre-flight testing on the number of infectious travellers entering the community 
was small, and was most effective if implemented the day prior to departure in scenarios with no post-flight 
testing (Figure S2).  
 
 



 
Figure 4 - Rate ratios for the number of infectious persons released (A) and the remaining infectious person-days (B) in each scenario 
compared to a baseline of syndromic screening and no quarantine or PCR testing on arrival. Scenarios with no testing are denoted by 
orange bars; single tests with purple bars, and two tests with blue bars. We assume that test results are delayed by 1 day and hence 
persons leave quarantine 1 day after their second test. Central bar = median; light bar = 95% uncertainty interval; dark bar = 50% 
uncertainty interval. 



Discussion 
 
Here we analysed the effect of different combinations of PCR testing and self-quarantine times on the 
number of infectious individuals entering a country, beyond the effect of syndromic screening at departure. 
We find that a quarantine period of at least 5 days, with a single PCR test on the final day of quarantine, 
results in a reduction of over 80% in both the number of infectious persons entering the community and the 
transmission potential of those persons. A 7-day quarantine with a test on the final day can reduce infectious 
entries by an average of 94%, with little marginal benefit for additional rounds of testing. In addition, tests 
prior to departure appear ineffective unless conducted less than 4 days prior to departure.  
 
Due to differences in COVID-19 prevalence and estimated travel volume in July 2020, the expected numbers 
of infectious entries per week in a no-intervention scenario (apart from self-reporting of symptoms and 
syndromic screening at departure) from the USA are approximately double that of the EU (up to 28 and up 
to 12, respectively). Travel volumes have been severely impacted by the pandemic, with volumes in April and 
May 2020 being 1% of those of 2019. We anticipate that the number of infectious travellers from each region 
will increasingly diverge as the number of flights and number of travellers increase, particularly as the length 
of quarantine precludes many travellers from taking short trips.  
 
The risk for local COVID-19 control stemming from infectious travellers will need to be assessed in the 
context of the local infection incidence. For example, 6 - 11 infectious travellers per week arriving in July 2020 
from the EU or USA into a community with thousands of live infections (such as that of the UK on 12 June 
2020, with prevalence estimated at 45 per 10,000 (95%: (24, 92) per 10,000)) will likely have little impact on 
control efforts. In contrast, if local infection prevalence is lower (as in the UK on 20 July 2020: 9 (5, 18) per 
10,000), these numbers of infectious travellers may pose a large risk for seeding outbreaks in the community 
(19). In England in late June an estimated 25,000 (13,000 to 46,000) people per week became infected with 
SARS-CoV-2 (37). Since then, transmission has been largely declining; however, as of mid-July 2020 still 
about 5,000 cases are reported per week in the UK and likely only form a small fraction of all infections in the 
country (16).  
 
We presented the risk from infected travellers as the number of infectious travellers entering the community. 
To account for the differential residual duration on their infectiousness under the different strategies, we also 
presented the number of infectious person-days in the community from travellers. While the latter measure 
indicates an increased effectiveness of longer quarantine, it may still present an underestimate of the true 
effect as the measure only considers that travellers are still infectious, not how likely transmission is given their 
viral load declines towards the end of their infectious period (and it is likely that infectiousness declines along 
with it). Hence, with a peak infectivity around the onset of symptoms at about 5 days, a minimum quarantine 
period of 7 days is likely to release not just fewer infectious travellers but less infectious travellers, with or 
without the use of a test at 7 days. 
 
Multiple assumptions were made in this analysis. We assumed that inbound travel volumes were 50% of total 
traveller movements as reported by the CAA, which may not reflect asymmetric patterns of repatriation. The 
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total number of traveller movements between the UK and each of the USA and EU in April and May 2020 
were approximately 1% of that reported in 2019, indicating that the combination of travel restrictions and 
airlines suspending flights has led to a sharp decrease in the number of potentially infected travellers. It is likely 
that as the pandemic progresses, travel volumes will begin to return to pre-pandemic levels and, as such, the 
likely number of infectious arrivals will increase unless prevalence is severely reduced. The expectation of 
quarantine on arrival will likely have played a key part in this reduction. In our analysis, we considered a 
constant air passenger volume and did not consider that shortening of quarantine will not only increase the 
risk from infectious travellers to the local community (19), but also increase the number of travellers. 
Therefore our estimates may be interpreted as change in the per traveller risk and may be underestimating the 
risk from an easing of the quarantine period requirements. To address this, we have provided estimates in 
terms of the number of infectious entries per 10,000 arrivals for the given prevalence.  
 
Increases in prevalence at travel origins is likely to result in an increase in the expected number of infectious 
arrivals. Reporting delays in detecting such increases in COVID-19 risk will be made augmented by delays in 
amended guidelines accordingly, a process which itself is not instantaneous upon receipt of updated 
prevalence estimates. If prevalence is seen to be rising in a certain country, additional protection may be 
provided by requiring two tests to be conducted, rather than a single test, in addition to quarantine. We 
assumed that 70% of ever-symptomatic persons currently symptomatic (e.g with a cough or fever) would be 
detected or self-report and hence not travel. While COVID-19 risk awareness is now generally high, the non-
specificity of symptoms will likely lead some travellers to try to ignore or suppress their symptoms and pose 
additional risk that we have not explicitly included in our analysis. Asymptomatic infections, who may 
represent a substantial proportion of all infected individuals in some locations (38), will not be prevented 
from boarding or have their infectious period censored by self-isolation following symptom onset.  Instead, 
these infections can only be detected by PCR screening for ongoing infection. 
 
We assume that the probability of detecting an asymptomatic infection is almost 40% less than that for a 
symptomatic infection (29). We have assumed that onset of symptoms (at peak PCR sensitivity, Figure 2A) 
occurs soon after the onset of infectiousness. At the median end of symptomatic cases’ infectious period, the 
sensitivity of PCR, when detecting symptomatic infections, is still greater than 0.6 (at the 95th percentile it is 
still greater than 0.4), reflecting that ever-symptomatic cases are still more likely than not to be PCR positive 
as well as symptomatic, and therefore spend more time than is necessary in isolation, even though they may 
no longer be shedding virus (29). In the high scenarios, we allow the timing of the first post-arrival test to vary 
between 0 days (i.e, on arrival) and 3 days (i.e when in quarantine). Requiring the first test to be administered 
at the airport may reduce loss to follow-up but comes at the expense of additional burden on travellers on the 
day of travel, extending the duration of time spent in the airport terminal.   
 
We consider only the infectiousness of the infectious arrivals, and the ability for screening to detect them. We 
do not make any assumptions about the potential for self-isolating infectious travellers to infect their 
household upon arrival and the resulting onwards transmission, or that adherence to self-isolation may be 
imperfect as both a first negative test and a long duration of quarantine may reduce adherence to quarantine 
rules (3,5). Hence, by assuming perfect adherence, we may overestimate the added benefit of long periods of 
quarantine in terms of the person-days of infectiousness in the community. A policy of managed quarantine 
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in a community facility or hotel (39) has been  adopted by countries such as New Zealand and Vietnam (40) 
who have successfully pursued elimination strategies (41). 
 
We assume that individuals who become symptomatic during quarantine begin an additional period of self-
isolation of at least 7 days from symptom onset, until they no longer experience symptoms and their total 
quarantine and isolation period is at least 14 days long. The longer the duration of quarantine, the more likely 
it is that ever-symptomatic individuals develop symptoms and self-isolate, further reducing the number of 
infectious entries. This leads to the main impact of quarantine and PCR testing strategies being the reduction 
of possible transmission from asymptomatic travellers (Figure S3) who are only detectable here by PCR. We 
also assume that if individuals subsequently become symptomatic after quarantine (whether that is a result of 
an undetected imported SARS-CoV-2 infection with a long latent period, an infection acquired locally or 
abroad, or for other reasons), they follow national guidelines to immediately re-enter quarantine and seek 
another test as part of the local test and trace strategy. This may overestimate the ability of individuals to 
accurately self-diagnose their symptoms, but we assume that traveller sensitisation (42,43), particularly during 
quarantine, is high at this point in the pandemic.  
 
For the foreseeable future we will need to carefully balance the need for traveller targeted intervention that 
reduces the likelihood of seeding local COVID-19 outbreaks with the restrictions they impose on travellers. 
While the acceptable number of infected travellers entering the community will depend on the local context 
of SARS-CoV-2 transmission we find that for travellers arriving from low prevalence destinations the 
absolute risk of seeding new outbreaks is likely low and hence either testing and/or quarantine-based strategies 
may do little to further reduce such risk, particularly when many infectious arrivals are asymptomatic cases. 
For arrivals from countries with ongoing community transmission, quarantine on arrival will limit the risk 
for onward transmission into the local community. While a 14-day quarantine will likely prevent most 
transmission from travellers, an 8-day quarantine (with testing on day 7) can capture as many infectious 
persons in approximately half the time. Testing passengers is resource-intensive but presents a way to either 
further reduce risks or allow a shorter quarantine at the same level of risk, particularly for arrival from 
countries with widespread SARS-CoV-2 transmission.  

  

https://paperpile.com/c/vBePla/Q2e8
https://paperpile.com/c/vBePla/LMA9
https://paperpile.com/c/vBePla/ZKeT
https://paperpile.com/c/vBePla/DG7K+bNxC


References 
1.  Department of Health & Social Care. Coronavirus (COVID-19): how to self-isolate when you travel 

to the UK [Internet]. GOV.UK; 2020 [cited 2020 Jul 20]. Available from: 
https://www.gov.uk/government/publications/coronavirus-covid-19-how-to-self-isolate-when-you-
travel-to-the-uk/coronavirus-covid-19-how-to-self-isolate-when-you-travel-to-the-uk 

2.  Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, 
China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med [Internet]. 2020 Mar 
26;382(13):1199–207. Available from: http://dx.doi.org/10.1056/NEJMoa2001316 

3.  Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, et al. The psychological 
impact of quarantine and how to reduce it: rapid review of the evidence. Lancet [Internet]. 2020; 
Available from: https://doi.org/10.1016/S0140-6736(20)30460-8 

4.  Pfefferbaum B, North CS. Mental Health and the Covid-19 Pandemic. N Engl J Med [Internet]. 2020 
Apr 13; Available from: http://dx.doi.org/10.1056/NEJMp2008017 

5.  Webster RK, Brooks SK, Smith LE, Woodland L, Wessely S, Rubin GJ. How to improve adherence 
with quarantine: rapid review of the evidence. Public Health [Internet]. 2020 May;182:163–9. 
Available from: http://dx.doi.org/10.1016/j.puhe.2020.03.007 

6.  International Tourist Numbers Could Fall 60-80% in 2020, UNWTO Reports | UNWTO [Internet]. 
[cited 2020 Jul 20]. Available from: https://www.unwto.org/news/covid-19-international-tourist-
numbers-could-fall-60-80-in-2020 

7.  Traveler Survey Reveals COVID-19 Concerns [Internet]. [cited 2020 Jul 20]. Available from: 
https://www.iata.org/en/pressroom/pr/2020-07-07-01/ 

8.  Quest SARS-CoV-2 rRT-PCR (Quest Diagnostics Infectious Disease, Inc.) - Manufacturer 
Instructions/Package Insert | FDA [Internet]. [cited 2020 Jul 16]. Available from: 
https://www.fda.gov/media/136231/ 

9.  Joint Press Statement by Ministry of Foreign Affairs and Ministry of Trade and Industry on the 
Singapore-China Fast Lane for Essential Travel [Internet]. [cited 2020 Jul 6]. Available from: 
https://www.mfa.gov.sg/Newsroom/Press-Statements-Transcripts-and-Photos/2020/06/20200603-
SG-CHINA-Fast-Lane-Essential-Travel 

10.  Foreign, Commonwealth Office. Entry requirements - Hong Kong (SAR of China) travel advice. 
2013 Mar 1 [cited 2020 Jul 6]; Available from: https://www.gov.uk/foreign-travel-advice/hong-
kong/entry-requirements 

11.  COVID-19 Thematic Website, Together, We Fight the Virus, Inbound Travel [Internet]. [cited 2020 
Jul 16]. Available from: https://www.coronavirus.gov.hk/eng/inbound-travel.html 

12.  Nikkei Staff Writers. Japan set to lift quarantines for business travelers in summer [Internet]. Nikkei 
Asian Review. Nikkei Asian Review; 2020 [cited 2020 Jul 6]. Available from: 
https://asia.nikkei.com/Business/Travel-Leisure/Japan-set-to-lift-quarantines-for-business-travelers-
in-summer 

http://paperpile.com/b/vBePla/klXf
http://paperpile.com/b/vBePla/klXf
https://www.gov.uk/government/publications/coronavirus-covid-19-how-to-self-isolate-when-you-travel-to-the-uk/coronavirus-covid-19-how-to-self-isolate-when-you-travel-to-the-uk
https://www.gov.uk/government/publications/coronavirus-covid-19-how-to-self-isolate-when-you-travel-to-the-uk/coronavirus-covid-19-how-to-self-isolate-when-you-travel-to-the-uk
http://paperpile.com/b/vBePla/zvQ9
http://paperpile.com/b/vBePla/zvQ9
http://paperpile.com/b/vBePla/zvQ9
http://dx.doi.org/10.1056/NEJMoa2001316
http://paperpile.com/b/vBePla/9hLP
http://paperpile.com/b/vBePla/9hLP
http://paperpile.com/b/vBePla/9hLP
https://doi.org/10.1016/S0140-6736(20)30460-8
http://paperpile.com/b/vBePla/SaXf
http://paperpile.com/b/vBePla/SaXf
http://dx.doi.org/10.1056/NEJMp2008017
http://paperpile.com/b/vBePla/fySM
http://paperpile.com/b/vBePla/fySM
http://paperpile.com/b/vBePla/fySM
http://dx.doi.org/10.1016/j.puhe.2020.03.007
http://paperpile.com/b/vBePla/ThhR
http://paperpile.com/b/vBePla/ThhR
https://www.unwto.org/news/covid-19-international-tourist-numbers-could-fall-60-80-in-2020
https://www.unwto.org/news/covid-19-international-tourist-numbers-could-fall-60-80-in-2020
http://paperpile.com/b/vBePla/Tiom
http://paperpile.com/b/vBePla/Tiom
https://www.iata.org/en/pressroom/pr/2020-07-07-01/
http://paperpile.com/b/vBePla/EDVE
http://paperpile.com/b/vBePla/EDVE
https://www.fda.gov/media/136231/
http://paperpile.com/b/vBePla/wPLU
http://paperpile.com/b/vBePla/wPLU
https://www.mfa.gov.sg/Newsroom/Press-Statements-Transcripts-and-Photos/2020/06/20200603-SG-CHINA-Fast-Lane-Essential-Travel
https://www.mfa.gov.sg/Newsroom/Press-Statements-Transcripts-and-Photos/2020/06/20200603-SG-CHINA-Fast-Lane-Essential-Travel
http://paperpile.com/b/vBePla/6ZX5
http://paperpile.com/b/vBePla/6ZX5
https://www.gov.uk/foreign-travel-advice/hong-kong/entry-requirements
https://www.gov.uk/foreign-travel-advice/hong-kong/entry-requirements
http://paperpile.com/b/vBePla/AEx2
http://paperpile.com/b/vBePla/AEx2
https://www.coronavirus.gov.hk/eng/inbound-travel.html
http://paperpile.com/b/vBePla/cOdJ
http://paperpile.com/b/vBePla/cOdJ
https://asia.nikkei.com/Business/Travel-Leisure/Japan-set-to-lift-quarantines-for-business-travelers-in-summer
https://asia.nikkei.com/Business/Travel-Leisure/Japan-set-to-lift-quarantines-for-business-travelers-in-summer


13.  Japan may let in quota of 250 businesspeople from four countries daily [Internet]. The Japan Times. 
2020 [cited 2020 Jul 6]. Available from: 
https://www.japantimes.co.jp/news/2020/06/11/national/japan-250-business-travelers-four-
countries-daily/ 

14.  Airport data 2019 07 | UK Civil Aviation Authority [Internet]. [cited 2020 Jul 20]. Available from: 
https://www.caa.co.uk/Data-and-analysis/UK-aviation-market/Airports/Datasets/UK-Airport-
data/Airport-data-2019-07/ 

15.  Airport data 2020 05 | UK Civil Aviation Authority [Internet]. [cited 2020 Jul 4]. Available from: 
https://www.caa.co.uk/Data-and-analysis/UK-aviation-market/Airports/Datasets/UK-Airport-
data/Airport-data-2020-05/ 

16.  Russell TW, Joel Hellewell SA, Golding N, Gibbs H, Jarvi CI, Kevin van Zandvoort, et al. Using a 
delay-adjusted case fatality ratio to estimate under-reporting [Internet]. 2020 Mar [cited 2020 Jun 25]. 
Available from: https://cmmid.github.io/topics/covid19/global_cfr_estimates.html 

17.  Buitrago-Garcia DC, Egli-Gany D, Counotte MJ, Hossmann S, Imeri H, Ipekci AM, et al. The role of 
asymptomatic SARS-CoV-2 infections: rapid living systematic review and meta-analysis [Internet]. 
Epidemiology. medRxiv; 2020. Available from: 
https://www.medrxiv.org/content/10.1101/2020.04.25.20079103v2 

18.  Gostic K, Gomez AC, Mummah RO, Kucharski AJ, Lloyd-Smith JO. Estimated effectiveness of 
symptom and risk screening to prevent the spread of COVID-19. Elife [Internet]. 2020 Feb 24;9. 
Available from: http://dx.doi.org/10.7554/eLife.55570 

19.  Russell TW, Wu J, Clifford S, Edmunds J, Kucharski AJ, Jit M. The effect of international travel 
restrictions on internal spread of COVID-19 [Internet]. Epidemiology. medRxiv; 2020. Available 
from: https://www.medrxiv.org/content/10.1101/2020.07.12.20152298v1 

20.  Quilty BJ, Clifford S, Flasche S, Eggo RM, CMMID nCoV working group. Effectiveness of airport 
screening at detecting travellers infected with novel coronavirus (2019-nCoV). Euro Surveill 
[Internet]. 2020 Feb;25(5). Available from: http://dx.doi.org/10.2807/1560-
7917.ES.2020.25.5.2000080 

21.  Gostic K. Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19 
[Internet]. Github; [cited 2020 Jul 16]. Available from: 
https://github.com/kgostic/traveller_screening 

22.  Criteria for COVID-19 Testing in the Air Travel Process [Internet]. [cited 2020 Jul 4]. Available 
from: https://www.iata.org/en/pressroom/pr/2020-06-16-02/ 

23.  北京铁路部门：对高风险群体实行购票限制 离京需持7日内核酸检测阴性证明-新华网 
[Internet]. [cited 2020 Jul 6]. Available from: http://www.xinhuanet.com/politics/2020-
06/23/c_1126152337.htm 

24.  Department of Health, Care S. Coronavirus (COVID-19): getting tested. 2020 Apr 15 [cited 2020 Jun 
12]; Available from: https://www.gov.uk/guidance/coronavirus-covid-19-getting-tested 

25.  Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in False-Negative Rate of 
Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. 

http://paperpile.com/b/vBePla/54kZ
http://paperpile.com/b/vBePla/54kZ
https://www.japantimes.co.jp/news/2020/06/11/national/japan-250-business-travelers-four-countries-daily/
https://www.japantimes.co.jp/news/2020/06/11/national/japan-250-business-travelers-four-countries-daily/
http://paperpile.com/b/vBePla/EOrs
http://paperpile.com/b/vBePla/EOrs
https://www.caa.co.uk/Data-and-analysis/UK-aviation-market/Airports/Datasets/UK-Airport-data/Airport-data-2019-07/
https://www.caa.co.uk/Data-and-analysis/UK-aviation-market/Airports/Datasets/UK-Airport-data/Airport-data-2019-07/
http://paperpile.com/b/vBePla/93m9
http://paperpile.com/b/vBePla/93m9
https://www.caa.co.uk/Data-and-analysis/UK-aviation-market/Airports/Datasets/UK-Airport-data/Airport-data-2020-05/
https://www.caa.co.uk/Data-and-analysis/UK-aviation-market/Airports/Datasets/UK-Airport-data/Airport-data-2020-05/
http://paperpile.com/b/vBePla/4lw7
http://paperpile.com/b/vBePla/4lw7
http://paperpile.com/b/vBePla/4lw7
https://cmmid.github.io/topics/covid19/global_cfr_estimates.html
http://paperpile.com/b/vBePla/SaYm
http://paperpile.com/b/vBePla/SaYm
http://paperpile.com/b/vBePla/SaYm
http://paperpile.com/b/vBePla/SaYm
https://www.medrxiv.org/content/10.1101/2020.04.25.20079103v2
http://paperpile.com/b/vBePla/Z2c3
http://paperpile.com/b/vBePla/Z2c3
http://paperpile.com/b/vBePla/Z2c3
http://dx.doi.org/10.7554/eLife.55570
http://paperpile.com/b/vBePla/JDcA
http://paperpile.com/b/vBePla/JDcA
http://paperpile.com/b/vBePla/JDcA
https://www.medrxiv.org/content/10.1101/2020.07.12.20152298v1
http://paperpile.com/b/vBePla/6vOg
http://paperpile.com/b/vBePla/6vOg
http://paperpile.com/b/vBePla/6vOg
http://dx.doi.org/10.2807/1560-7917.ES.2020.25.5.2000080
http://dx.doi.org/10.2807/1560-7917.ES.2020.25.5.2000080
http://paperpile.com/b/vBePla/ZF26
http://paperpile.com/b/vBePla/ZF26
https://github.com/kgostic/traveller_screening
http://paperpile.com/b/vBePla/BPGd
http://paperpile.com/b/vBePla/BPGd
https://www.iata.org/en/pressroom/pr/2020-06-16-02/
http://paperpile.com/b/vBePla/QvtQ
http://paperpile.com/b/vBePla/QvtQ
http://www.xinhuanet.com/politics/2020-06/23/c_1126152337.htm
http://www.xinhuanet.com/politics/2020-06/23/c_1126152337.htm
http://paperpile.com/b/vBePla/mXuc
http://paperpile.com/b/vBePla/mXuc
https://www.gov.uk/guidance/coronavirus-covid-19-getting-tested
http://paperpile.com/b/vBePla/XLna
http://paperpile.com/b/vBePla/XLna


Ann Intern Med [Internet]. 2020 May 13; Available from: http://dx.doi.org/10.7326/M20-1495 

26.  Pya N, Wood SN. Shape constrained additive models. Stat Comput [Internet]. 2015 May 
1;25(3):543–59. Available from: https://doi.org/10.1007/s11222-013-9448-7 

27.  Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of 
Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and 
Application. Ann Intern Med [Internet]. 2020 May 5;172(9):577–82. Available from: 
http://dx.doi.org/10.7326/M20-0504 

28.  Grassly N, Pons Salort M, Parker E, White P, Ainslie K, Baguelin M, et al. Report 16: Role of testing 
in COVID-19 control. 2020; Available from: 
https://spiral.imperial.ac.uk:8443/handle/10044/1/78439 

29.  Chau NVV, Thanh Lam V, Thanh Dung N, Yen LM, Minh NNQ, Hung LM, et al. The natural 
history and transmission potential of asymptomatic SARS-CoV-2 infection. Clin Infect Dis 
[Internet]. 2020 Jun 4; Available from: http://dx.doi.org/10.1093/cid/ciaa711 

30.  He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and 
transmissibility of COVID-19. Nat Med [Internet]. 2020 May;26(5):672–5. Available from: 
http://dx.doi.org/10.1038/s41591-020-0869-5 

31.  Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment 
of hospitalized patients with COVID-2019. Nature [Internet]. 2020 May;581(7809):465–9. Available 
from: http://dx.doi.org/10.1038/s41586-020-2196-x 

32.  Byrne AW, McEvoy D, Collins A, Hunt K, Casey M, Barber A, et al. Inferred duration of infectious 
period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and 
symptomatic COVID-19 cases [Internet]. Epidemiology. medRxiv; 2020. Available from: 
https://www.medrxiv.org/content/10.1101/2020.04.25.20079889v1 

33.  Davies NG, Klepac P, Liu Y, Prem K, Jit M, CMMID COVID-19 working group, et al. Age-
dependent effects in the transmission and control of COVID-19 epidemics [Internet]. Epidemiology. 
medRxiv; 2020. Available from: https://www.medrxiv.org/content/10.1101/2020.03.24.20043018v2 

34.  Ashcroft P, Huisman JS, Lehtinen S, Bouman JA, Althaus CL, Regoes RR, et al. COVID-19 
infectivity profile correction [Internet]. arXiv [q-bio.PE]. 2020. Available from: 
http://arxiv.org/abs/2007.06602 

35.  Devroye L. General Principles in Random Variate Generation [Internet]. Non-Uniform Random 
Variate Generation. 1986. p. 27–82. Available from: http://dx.doi.org/10.1007/978-1-4613-8643-8_2 

36.  R Core Team. R: A Language and Environment for Statistical Computing [Internet]. R Foundation 
for Statistical Computing; 2020. Available from: https://www.R-project.org 

37.  Connors E, Williams C. Coronavirus (COVID-19) Infection Survey pilot - Office for National 
Statistics [Internet]. Office for National Statistics. 2020 [cited 2020 Jul 20]. Available from: 
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddisease
s/bulletins/coronaviruscovid19infectionsurveypilot/2july2020 

38.  Lavezzo E, Franchin E, Ciavarella C, Cuomo-Dannenburg G, Barzon L, Del Vecchio C, et al. 

http://paperpile.com/b/vBePla/XLna
http://dx.doi.org/10.7326/M20-1495
http://paperpile.com/b/vBePla/1a2B
http://paperpile.com/b/vBePla/1a2B
https://doi.org/10.1007/s11222-013-9448-7
http://paperpile.com/b/vBePla/jLHT
http://paperpile.com/b/vBePla/jLHT
http://paperpile.com/b/vBePla/jLHT
http://paperpile.com/b/vBePla/jLHT
http://dx.doi.org/10.7326/M20-0504
http://paperpile.com/b/vBePla/DxzY
http://paperpile.com/b/vBePla/DxzY
https://spiral.imperial.ac.uk:8443/handle/10044/1/78439
http://paperpile.com/b/vBePla/WtG7
http://paperpile.com/b/vBePla/WtG7
http://paperpile.com/b/vBePla/WtG7
http://dx.doi.org/10.1093/cid/ciaa711
http://paperpile.com/b/vBePla/bhHt
http://paperpile.com/b/vBePla/bhHt
http://dx.doi.org/10.1038/s41591-020-0869-5
http://paperpile.com/b/vBePla/uvJ4
http://paperpile.com/b/vBePla/uvJ4
http://paperpile.com/b/vBePla/uvJ4
http://dx.doi.org/10.1038/s41586-020-2196-x
http://paperpile.com/b/vBePla/ijXX
http://paperpile.com/b/vBePla/ijXX
http://paperpile.com/b/vBePla/ijXX
http://paperpile.com/b/vBePla/ijXX
https://www.medrxiv.org/content/10.1101/2020.04.25.20079889v1
http://paperpile.com/b/vBePla/kCF9
http://paperpile.com/b/vBePla/kCF9
http://paperpile.com/b/vBePla/kCF9
https://www.medrxiv.org/content/10.1101/2020.03.24.20043018v2
http://paperpile.com/b/vBePla/IW4Z
http://paperpile.com/b/vBePla/IW4Z
http://arxiv.org/abs/2007.06602
http://paperpile.com/b/vBePla/HzjM
http://paperpile.com/b/vBePla/HzjM
http://dx.doi.org/10.1007/978-1-4613-8643-8_2
http://paperpile.com/b/vBePla/GNg1
http://paperpile.com/b/vBePla/GNg1
https://www.r-project.org/
http://paperpile.com/b/vBePla/8gyU
http://paperpile.com/b/vBePla/8gyU
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/2july2020
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/2july2020
http://paperpile.com/b/vBePla/GJML


Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo’. Nature [Internet]. 2020 
Jun 30; Available from: http://dx.doi.org/10.1038/s41586-020-2488-1 

39.  World Health Organisation. Operational considerations for case management of COVID-19 in health 
facility and community [Internet]. 2020 Mar [cited 2020 Jul 1]. Report No.: WHO/2019-
nCoV/HCF_operations/2020.1. Available from: https://www.who.int/publications/i/item/10665-
331492 

40.  COVID-19 – Managed isolation and quarantine [Internet]. Ministry of Health NZ. [cited 2020 Jul 3]. 
Available from: https://www.health.govt.nz/our-work/diseases-and-conditions/covid-19-novel-
coronavirus/covid-19-current-situation/covid-19-border-controls/covid-19-managed-isolation-and-
quarantine 

41.  Baker MG, Kvalsvig A, Verrall AJ, Wellington N. New Zealand’s COVID-19 elimination strategy. 
Med J Aust [Internet]. 2020;1. Available from: https://www.mja.com.au/system/files/2020-
05/Baker%20mja20.00803%20-%2019%20May%202020.pdf 

42.  Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al. Feasibility of controlling 
COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Health [Internet]. 2020 
Apr;8(4):e488–96. Available from: http://dx.doi.org/10.1016/S2214-109X(20)30074-7 

43.  Clifford S, Pearson CAB, Klepac P, Van Zandvoort K, Quilty BJ, CMMID COVID-19 working 
group, et al. Effectiveness of interventions targeting air travellers for delaying local outbreaks of SARS-
CoV-2. J Travel Med [Internet]. 2020 May 8; Available from: http://dx.doi.org/10.1093/jtm/taaa068 

  

http://paperpile.com/b/vBePla/GJML
http://paperpile.com/b/vBePla/GJML
http://dx.doi.org/10.1038/s41586-020-2488-1
http://paperpile.com/b/vBePla/Q2e8
http://paperpile.com/b/vBePla/Q2e8
http://paperpile.com/b/vBePla/Q2e8
https://www.who.int/publications/i/item/10665-331492
https://www.who.int/publications/i/item/10665-331492
http://paperpile.com/b/vBePla/LMA9
http://paperpile.com/b/vBePla/LMA9
https://www.health.govt.nz/our-work/diseases-and-conditions/covid-19-novel-coronavirus/covid-19-current-situation/covid-19-border-controls/covid-19-managed-isolation-and-quarantine
https://www.health.govt.nz/our-work/diseases-and-conditions/covid-19-novel-coronavirus/covid-19-current-situation/covid-19-border-controls/covid-19-managed-isolation-and-quarantine
https://www.health.govt.nz/our-work/diseases-and-conditions/covid-19-novel-coronavirus/covid-19-current-situation/covid-19-border-controls/covid-19-managed-isolation-and-quarantine
http://paperpile.com/b/vBePla/ZKeT
http://paperpile.com/b/vBePla/ZKeT
https://www.mja.com.au/system/files/2020-05/Baker%20mja20.00803%20-%2019%20May%202020.pdf
https://www.mja.com.au/system/files/2020-05/Baker%20mja20.00803%20-%2019%20May%202020.pdf
http://paperpile.com/b/vBePla/DG7K
http://paperpile.com/b/vBePla/DG7K
http://paperpile.com/b/vBePla/DG7K
http://dx.doi.org/10.1016/S2214-109X(20)30074-7
http://paperpile.com/b/vBePla/bNxC
http://paperpile.com/b/vBePla/bNxC
http://paperpile.com/b/vBePla/bNxC
http://dx.doi.org/10.1093/jtm/taaa068


Acknowledgements 
The following authors were part of the Centre for Mathematical Modelling of Infectious Disease 2019-nCoV 
working group. Each contributed in processing, cleaning and interpretation of data, interpreted findings, 
contributed to the manuscript, and approved the work for publication: Katharine Sherratt, Stéphane Hué, 
Matthew Quaife, Nikos I Bosse, Graham Medley, Megan Auzenbergs, Adam J Kucharski, Nicholas G. 
Davies, Oliver Brady, Sophie R Meakin, Rein M G J Houben, Katherine E. Atkins, Kiesha Prem, C Julian 
Villabona-Arenas, Hamish P Gibbs, Thibaut Jombart, Charlie Diamond, Petra Klepac, Arminder K Deol, 
Rachel Lowe, James W Rudge, Mark Jit, Sebastian Funk, Gwenan M Knight, Simon R Procter, David 
Simons, Quentin J Leclerc, James D Munday, Amy Gimma, Georgia R Gore-Langton, Christopher I Jarvis, 
Jon C Emery, Anna M Foss, Kathleen O'Reilly, Joel Hellewell, Emily S Nightingale, Kevin van Zandvoort, 
Damien C Tully, Sam Abbott, Kaja Abbas, Fiona Yueqian Sun, Alicia Rosello. 
 

Authors’ Contributions 
SC, BJQ, SFlasche and WJE conceived the study and wrote the report. SC, BJQ, AE, SFlasche and WJE 
designed the model. SC and BJQ led the development and analysis of the screening model and produced the 
results and figures. TWR led the development of and analysis of the prevalence model. TWR, YL, YWDC, 
CABP, AE, SFlasche, REM and WJE consulted on the analyses. The CMMID COVID-19 working group 
members contributed by interpreting the study findings, contributing to the report, and approving the work 
for publication. All authors approved the final version for publication. 
 
We thank Anna Foss, Nikos I Bosse, James Munday, and C Julian Villabona-Arenas for their comments on a 
draft manuscript. 

Funding 
The following funding sources are acknowledged as providing funding for the named authors. This research 
was partly funded by the Bill & Melinda Gates Foundation (INV-003174: YL; NTD Modelling Consortium 
OPP1184344: CABP). DFID/Wellcome Trust (Epidemic Preparedness Coronavirus research programme 
221303/Z/20/Z: CABP). This project has received funding from the European Union's Horizon 2020 
research and innovation programme - project EpiPose (101003688: WJE, YL). HDR UK (MR/S003975/1: 
RME). This research was partly funded by the National Institute for Health Research (NIHR) using UK aid 
from the UK Government to support global health research. The views expressed in this publication are those 
of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care 
(16/136/46: BJQ; 16/137/109: BJQ, YL; PR-OD-1017-20002: WJE). UK MRC (MC_PC_19065 - Covid 
19: Understanding the dynamics and drivers of the COVID-19 epidemic using real-time outbreak analytics: 
RME, SC, WJE, YL). Wellcome Trust (206250/Z/17/Z: TWR; 208812/Z/17/Z: SC, SFlasche). Alan Turing 
Institute and Nakajima Foundation (AE). No funding (YWDC). 
 



The following funding sources are acknowledged as providing funding for the working group authors. 
BBSRC LIDP (BB/M009513/1: DS). This research was partly funded by the Bill & Melinda Gates 
Foundation (INV-001754: MQ; INV-003174: KP, MJ; NTD Modelling Consortium OPP1184344: GM; 
OPP1180644: SRP; OPP1183986: ESN; OPP1191821: KO'R, MA). BMGF (OPP1157270: KA). 
DFID/Wellcome Trust (Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z: KvZ). 
DTRA (HDTRA1-18-1-0051: JWR). Elrha R2HC/UK DFID/Wellcome Trust/This research was partly 
funded by the National Institute for Health Research (NIHR) using UK aid from the UK Government to 
support global health research. The views expressed in this publication are those of the author(s) and not 
necessarily those of the NIHR or the UK Department of Health and Social Care (KvZ). ERC Starting Grant 
(#757688: CJVA, KEA; #757699: JCE, MQ, RMGJH). This project has received funding from the European 
Union's Horizon 2020 research and innovation programme - project EpiPose (101003688: KP, MJ, PK). This 
research was partly funded by the Global Challenges Research Fund (GCRF) project 'RECAP' managed 
through RCUK and ESRC (ES/P010873/1: AG, CIJ, TJ). NIHR (16/137/109: CD, FYS, MJ; Health 
Protection Research Unit for Immunisation NIHR200929: NGD; Health Protection Research Unit for 
Modelling Methodology HPRU-2012-10096: TJ; NIHR200929: MJ; PR-OD-1017-20002: AR). Royal 
Society (Dorothy Hodgkin Fellowship: RL; RP\EA\180004: PK). UK DHSC/UK Aid/NIHR (ITCRZ 
03010: HPG). UK MRC (LID DTP MR/N013638/1: GRGL, QJL; MC_PC_19065 - Covid 19: 
Understanding the dynamics and drivers of the COVID-19 epidemic using real-time outbreak analytics: AG, 
NGD, TJ; MR/P014658/1: GMK). Authors of this research receive funding from UK Public Health Rapid 
Support Team funded by the United Kingdom Department of Health and Social Care (TJ). Wellcome Trust 
(206250/Z/17/Z: AJK; 206471/Z/17/Z: OJB; 210758/Z/18/Z: JDM, JH, KS, NIB, SA, SFunk, SRM). No 
funding (AKD, AMF, DCT, SH). 

Conflicts of interest 
Akira Endo received a research grant from Taisho Pharmaceutical Co. Ltd. 

Supplementary appendix 

Code and data sharing 
The model code is available at https://github.com/cmmid/travel_screening_strategies. 
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Figure S1 - A. Expected number of infectious and pre-infectious persons per 10,000 travellers free to enter the UK from the EU and 
USA in each of the scenarios and how long they spend in quarantine before release, with no pre-flight testing. B. Per-individual person-
days of infectiousness remaining after release per 10,000 travellers. Persons showing symptoms at departure were assumed to be 
prevented from travel, and post-infectious persons were assumed to not carry any risk of seeding transmission. Scenarios with no 
testing are denoted by orange bars; single tests with purple bars, and two tests with blue bars. We assume that test results are delayed 
by 1 day and hence persons leave self-isolation 1 day after their second test. Central bar = median; light bar = 95% uncertainty interval; 
dark bar = 50% uncertainty interval.



Figure S2 - No pre-flight testing or 
pre-flight testing 1, 4 or 7 days prior 
to the flight in addition to each of the 
scenarios. Expected number of 
infectious and pre-infectious persons 
free to enter the UK from the EU 
(top) and USA (bottom) per 10,000 
travellers in each of the scenarios and 
how long they spend in isolation 
before release. Persons showing 
symptoms at departure were 
assumed to be prevented from travel, 
and post-infectious persons were 
assumed to not carry any risk of 
seeding transmission. Scenarios with 
no testing are denoted by orange 
bars; single tests with purple bars, 
and two tests with blue bars. We 
assume that test results are delayed by 
1 day and hence persons leave self-
isolation 1 day after their second test. 
Central bar = median; light bar = 95% 
uncertainty interval; dark bar = 50% 
uncertainty interval. 

 



 
Figure S3 - Stratified on asymptomatic or pre-symptomatic. A. Expected number of infectious and pre-infectious persons per 10,000 
travellers free to enter the UK from the EU and USA in each of the scenarios and how long they spend in quarantine before release, 
with no pre-flight testing. B. Cumulative person-days of infectiousness remaining after release per 10,000 travellers. Persons showing 
symptoms at departure were assumed to be prevented from travel, and post-infectious persons were assumed to not carry any risk of 
seeding transmission. Scenarios with no testing are denoted by orange bars; single tests with purple bars, and two tests with blue bars. 
We assume that test results are delayed by 1 day and hence persons leave quarantine 1 day after their second test. Central bar = median; 
light bar = 95% uncertainty interval; dark bar = 50% uncertainty interval. 
 



 
Figure S4 - Rate ratios for the number of infectious persons released (A) and the remaining infectious person-days (BA) in each 
scenario compared to a baseline of a 14 day mandatory quarantine and no PCR testing on arrival.  Scenarios with no testing are 
denoted by orange bars; single tests with purple bars, and two tests with blue bars. We assume that test results are delayed by 1 day 
and hence persons leave quarantine 1 day after their second test. Central bar = median; light bar = 95% uncertainty interval; dark bar 
= 50% uncertainty interval. Where the median is at the upper limit of the plot, more than 50% of simulations have an infinitely large 
ratio. 
 



 
Figure S5 - A) Cumulative person-days of infectiousness remaining in each scenario with 10,000 travellers. B) Ratio of cumulative 
person-days remaining compared to a baseline of syndromic screening and no quarantine or PCR testing on arrival. Scenarios with 
no testing are denoted by orange bars; single tests with purple bars, and two tests with blue bars. We assume that test results are delayed 
by 1 day and hence persons leave quarantine 1 day after their second test. Central bar = median; light bar = 95% uncertainty interval; 
dark bar = 50% uncertainty interval. 


