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Abstract  
Background   
Non-pharmaceutical   interventions   have   been   implemented   to   reduce   transmission   of  
SARS-CoV-2   in   the   UK.   Projecting   the   size   of   an   unmitigated   epidemic   and   the   potential  
effect   of   different   control   measures   has   been   critical   to   support   evidence-based   policymaking  
during   the   early   stages   of   the   epidemic.   
 
Methods   
We   used   a   stochastic   age-structured   transmission   model   to   explore   a   range   of   intervention  
scenarios,   including   the   introduction   of   school   closures,   social   distancing,   shielding   of   elderly  
groups,   self-isolation   of   symptomatic   cases,   and   extreme   “lockdown”-type   restrictions.   We  
simulated   different   durations   of   interventions   and   triggers   for   introduction,   as   well   as  
combinations   of   interventions.   For   each   scenario,   we   projected   estimated   new   cases   over  
time,   patients   requiring   inpatient   and   critical   care   (intensive   care   unit,   ICU)   treatment,   and  
deaths.  
 
Findings   
We   found   that   mitigation   measures   aimed   at   reducing   transmission   would   likely   have  
decreased   the   reproduction   number,   but   not   sufficiently   to   prevent   ICU   demand   from  
exceeding   NHS   availability.   To   keep   ICU   bed   demand   below   capacity   in   the   model,   more  
extreme   restrictions   were   necessary.   In   a   scenario   where   “lockdown”-type   interventions   were  
put   in   place   to   reduce   transmission,   these   interventions   would   need   to   be   in   place   for   a   large  
proportion   of   the   coming   year   in   order   to   prevent   healthcare   demand   exceeding   availability.  
 
Interpretation  
The   characteristics   of   SARS-CoV-2   mean   that   extreme   measures   are   likely   required   to   bring  
the   epidemic   under   control   and   to   prevent   very   large   numbers   of   deaths   and   an   excess   of  
demand   on   hospital   beds,   especially   those   in   ICUs.   
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Research   in   Context  
Evidence   before   this   study  
As   countries   have   moved   from   early   containment   efforts   to   planning   for   the   introduction   of  
large-scale   non-pharmaceutical   interventions   to   control   COVID-19   outbreaks,   epidemic  
modelling   studies   have   explored   the   potential   for   extensive   social   distancing   measures   to  
curb   transmission.   However,   it   remains   unclear   how   different   combinations   of   interventions,  
timings,   and   triggers   for   the   introduction   and   lifting   of   control   measures   may   affect   the   impact  
of   the   epidemic   on   health   services,   and   what   the   range   of   uncertainty   associated   with   these  
estimates   would   be.  
 
Added   value   of   this   study  
Using   a   stochastic,   age-structured   epidemic   model,   we   explored   how   eight   different  
intervention   scenarios   could   influence   the   number   of   new   cases   and   deaths,   as   well   as  
intensive   care   beds   required   over   the   projected   course   of   the   epidemic.   We   also   assessed  
the   potential   impact   of   local   versus   national   targeting   of   interventions,   reduction   in   leisure  
events,   impact   of   increased   childcare   by   grandparents,   and   timing   of   triggers   for   different  
control   measures.   We   simulated   multiple   realisations   for   each   scenario   to   reflect   uncertainty  
in   possible   epidemic   trajectories.  
 
Implications   of   all   the   available   evidence  
Our   results   support   early   modelling   findings,   and   subsequent   empirical   observations,   that   in  
the   absence   of   control   measures,   a   COVID-19   epidemic   could   quickly   overwhelm   a  
healthcare   system.   We   found   that   even   a   combination   of   moderate   interventions   –   such   as  
school   closures,   shielding   of   older   groups   and   self-isolation   –   would   be   unlikely   to   prevent   an  
epidemic   that   would   far   exceed   available   ICU   capacity   in   the   UK.   Intermittent   periods   of  
more   intensive   lockdown-type   measures   are   predicted   to   be   effective   for   preventing   the  
healthcare   system   from   being   overwhelmed.  
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Introduction  
The   novel   coronavirus   SARS-CoV-2   has   spread   to   multiple   countries   after   causing   an   initial  
outbreak   of   disease   (COVID-19)   in   Wuhan,   China    [1] .   Early   evidence   indicated   SARS-CoV-2  
was   capable   of   sustained   human-to-human   transmission    [2]    and   could   cause   severe   disease  
[3] ,   with   a   higher   risk   of   severe   and   fatal   outcomes   in   older   individuals    [4] .   The   first   two  
cases   of   COVID-19   in   the   United   Kingdom   (UK)   were   confirmed   on   31   January   2020.  
Although   implementation   of   testing,   isolation   and   contact   tracing   likely   slowed   early  
transmission    [5] ,   it   was   not   sufficient   to   contain   the   outbreak   in   the   UK.   
 
Following   the   introduction   of   extensive   control   measures   in   Wuhan   in   late   January,  
including—among   other   measures—travel   restrictions,   social   distancing,   and   requirements  
for   residents   to   stay   within   their   homes,   there   was   a   substantial   decline   in   local   transmission  
[6–8] .   Social   distancing   measures,   such   as   closure   of   schools,   bars,   restaurants,   and  
constraints   on   individual   movements   and   interactions,   are   now   in   place   in   many   countries  
with   the   aim   of   reducing   transmission   of   SARS-CoV-2    [9,10] .   However,   it   remains   unclear  
precisely   how   the   timing,   duration,   and   intensity   of   different   measures   targeting   transmission  
and   burden   can   reduce   the   impact   of   COVID-19.   Here,   based   upon   scenarios   originally  
presented   to   scientific   advisory   bodies   in   the   UK,   we   use   a   mathematical   model   to   assess  
the   potential   impact   of   different   control   measures   for   mitigating   the   burden   of   COVID-19,   and  
evaluate   possible   medium-term   scenarios   as   the   most   restrictive   short-term   measures   are  
eventually   lifted.  

Methods  
Dynamic   transmission   model  
We   analysed   a   stochastic   compartmental   model   stratified   into   5-year   age   bands,   with  
individuals   classified   according   to   current   disease   status   ( Fig.   1 )   and   transmission   between  
groups   based   on   UK   social   mixing   patterns   ( [11,12] ;   full   details   in   Supplementary  
Information).   After   infection   with   SARS-CoV-2   in   the   model,   susceptible   individuals   pass  
through   a   latent   period   before   becoming   infectious,   either   with   a   preclinical   and   then   clinical  
infection,   or   with   a   subclinical   infection,   before   recovery   or   isolation.   We   refer   to   those  
infections   causing   few   or   no   symptoms   as   subclinical.   We   assume   older   individuals   are   more  
likely   to   show   clinical   symptoms    [11] .   The   model   tracks   66.4   million   people   aggregated   to   the  
186   county-level   administrative   units   in   England,   Wales,   Scotland,   and   Northern   Ireland.   
 
Key   model   parameters  
We   collated   multiple   sources   of   evidence   to   estimate   key   model   parameters   ( Table   S1 ).   In   a  
meta-analysis,   we   estimated   that   the   basic   reproduction   number,    R 0 —which   describes   the  
average   number   of   secondary   infections   caused   by   a   typical   primary   infection   in   a  
completely   susceptible   population—was   2.7   (95%   credible   interval:   1.6–3.9)   across   settings  
without   substantial   control   measures   in   place.   We   derived   age-stratified   case   fatality   ratios  
(CFR)   to   estimate   a   CFR   that   ranged   substantially   across   age   groups,   from   0.1%   in   the  
20–29   age   group   to   7.7%   in   the   over-80   age   group.   Using   these   values   along   with   the  
relationship   between   CFR   and   severe   and   critical   cases,   we   also   estimated   the   proportion   of  
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clinical   cases   in   each   age   group   that   would   require   hospitalisation,   which   was   0.8%   in   the  
20-29   age   group   and   62%   in   the   over-80   age   group   ( Table   S2 ).  
 

 
Fig.   1.   State   transitions   in   the   model.    Individuals   in   the   stochastic   compartmental   model   are  
classified   into   susceptible,   exposed,   infectious   (preclinical,   clinical,   or   subclinical),   and   recovered  
states.   The   model   is   stratified   into   5-year   age   bands   and   epidemics   are   simulated   in   the   186  
county-level   administrative   units   of   the   UK.  
 
 
 
Intervention   scenarios  
We   explored   a   variety   of   non-pharmaceutical   interventions,   which   we   assumed   would   impact  
the   rate   of   contact   between   individuals   as   well   as   the   relative   infectiousness   of   symptomatic  
individuals.   Contact   matrices   were   constructed   by   summing   home,   work,   school,   and   “other”  
contacts   calculated   from   survey   data    [12] ,   with   interventions   altering   the   relative   number   of  
contacts   of   each   type   ( Table   2 ).   We   simulated   self-isolation   of   symptomatic   individuals   by  
decreasing   their   infectiousness   by   35%   during   the   intervention   period.   This   was   based   on   a  
calculation   that   approximately   70%   of   contacts   occur   outside   the   home;   we   assumed   that  
these   could   be   reduced   by   half   for   individuals   under   self-isolation,   consistent   with   findings  
that   accelerated   case   isolation   in   Shenzhen,   China   reduced   transmission   by   35%    [13] .   We  
included   regular   school   closures   for   holidays   in   all   models.  
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Table   2.    Intervention   scenarios.   Each   intervention   was   assumed   to   affect   either   a   component   of   the  
contact   matrix   or   the   infectiousness   of   symptomatic   individuals,   reducing   it   to   the   percentage   shown.  

 
Home   
contacts  

Work   
contacts  

School   
contacts  

Other   
contacts  

Infectiousness   of  
symptomatic  
individuals  

Baseline  100%  100%  100%  100%  100%  

School   Closures  100%  100%  0%  100%  100%  

Social   Distancing  100%  50%  100%  50%  100%  

Elderly   Shielding  100%  25%   (70+);  
100%   (others)  

100%  25%   (70+);  
100%   (others)  

100%  

Self-Isolation  100%  100%  100%  100%  
 

65%  

Combined  100%  25%   (70+);  
50%   (others)  

0%  25%   (70+);  
50%   (others)  

65%  

Intensive  
interventions   
(see   Supporting  
Information)  

100%  25%   (70+);  
65%   (others)  

100%   (open)  
0%   (closed)  

16%   (70+);  
59%   (others)  

65%  

Lockdown  100%  10%  
 

10%   (open);  
0%   (closed)  

10%  65%  
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Results  
Projections   for   an   unmitigated   epidemic  
Simulations   of   an   unmitigated   COVID-19   epidemic   resulted   in   a   median   24   million   (95%  
prediction   interval:   16–30   million)   clinical   cases   in   the   UK   up   to   December   2021   ( Fig.   2;  
Table   4 ).   Under   this   scenario,   85%   of   the   population   (68–96%)   would   be   infected   by  
SARS-CoV-2,   with   roughly   40%   of   those   infected   showing   clinical   symptoms.   In   turn,   this  
would   result   in   a   projected   370   thousand   (250–470   thousand)   deaths   directly   attributable   to  
COVID-19,   without   accounting   for   any   potential   increase   in   the   case   fatality   ratio   caused   by  
exceeding   hospital   capacity.   The   projected   peak   number   of   ICU   beds   required   was   220  
thousand   (120–360   thousand).   This   is   roughly   25–80   times   ICU   capacity   in   the   UK,   which  
we   tallied   at   4,562   beds    [14–17]    in   the   absence   of   any   efforts   to   further   expand   capacity.  
 
Impact   of   non-pharmaceutical   interventions  
Non-pharmaceutical   interventions   against   previous   epidemics—particularly   school   closures  
in   response   to   pandemic   influenza   or   SARS—have   typically   been   put   in   place   for   periods   of  
one   week   to   three   months    [18] .   Accordingly,   we   first   evaluated   a   number   of   scenarios   under  
which   non-pharmaceutical   interventions   would   be   deployed   for   12   weeks.   The   interventions  
we   analysed   were   school   closures;   social   distancing;   shielding   of   the   elderly;   self-isolation   of  
symptomatic   individuals;   and   combinations   of   these   policies   ( Table   2 ).   These   mitigation  
measures   decreased   the   total   number   of   cases   by   70–75%   and   delayed   the   peak   of   the  
epidemic   by   3–8   weeks   on   average   ( Fig.   2a,   b ).   While   social   distancing   was   predicted   to  
have   the   greatest   impact   on   the   total   number   of   cases,   elderly   shielding   was   predicted   to  
have   the   greatest   impact   on   the   number   of   deaths   ( Table   4 ).  
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Fig.   2.   Impact   of   interventions   lasting   12   weeks.    (a)   Daily   new   cases   and   ICU   beds   required   over  
the   course   of   the   simulated   scenarios   in   the   UK.   From   50   realisations   of   each   projection,   we   show   11  
representative   simulations,   corresponding   to   each   decile   of   the   total   number   of   cases;   the   bold   curve  
shows   the   simulation   resulting   in   the   median   projected   number   of   cases.   Blue   shaded   regions   show  
regular   school   closures,   while   the   pink   shaded   region   shows   the   distribution   of   12-week   interventions.  
(b)   Summary   of   simulated   outputs,   in   total   number   of   clinical   cases   and   deaths,   clinical   cases   in   peak  
week,   peak   ICU   beds   required,   peak   non-ICU   beds   required,   and   the   time   from   seeding   until   peak   of  
the   epidemic.   (c)   The   sampled   distribution   of   the   basic   reproduction   number,    R 0 ,   under   each  
intervention   scenario.  
 
Table   4.   Projected   impact   of   12-week   interventions   in   the   UK.    Median   and   95%   prediction   interval  
reported.   Totals   are   calculated   up   to   December   31,   2021.  
 Base  School  

Closures  
Social  
Distancing  

Elderly  
Shielding  

Self-Isolation  Combination  

Total   cases  24   M   (16  
M–30   M)  

18   M   (11   M–25  
M)  

17   M   (10   M–23  
M)  

17   M   (10   M–23  
M)  

18   M   (10   M–24  
M)  

18   M   (11   M–24  
M)  

Total   deaths  370   k   (250  
k–470   k)  

280   k   (150  
k–400   k)  

250   k   (140  
k–360   k)  

220   k   (130  
k–330   k)  

260   k   (140  
k–390   k)  

280   k   (150   k–390  
k)  

Cases   in   peak   week  4.2   M   (2.5  
M–6.4   M)  

2.8   M   (940  
k–6.2   M)  

2.2   M   (1   M–4.2  
M)  

2.9   M   (1.1  
M–6.4   M)  

2.7   M   (900  
k–6.1   M)  

3.5   M   (1.2   M–5.3  
M)  

Deaths   in   peak   week  62   k   (35   k–98  
k)  

41   k   (13   k–96   k)  31   k   (14   k–62   k)  34   k   (12   k–79   k)  39   k   (12   k–92   k)  51   k   (17   k–82   k)  

Peak   ICU   beds  
required  

220   k   (120  
k–360   k)  

150   k   (45   k–350  
k)  

110   k   (49   k–220  
k)  

120   k   (42   k–300  
k)  

140   k   (44   k–330  
k)  

190   k   (61   k–300  
k)  

Peak   non-ICU   beds  
required  

420   k   (230  
k–670   k)  

280   k   (85   k–670  
k)  

210   k   (92   k–420  
k)  

230   k   (79   k–560  
k)  

270   k   (83   k–630  
k)  

350   k   (120   k–570  
k)  

Time   to   peak   cases  
(weeks)  

11   (8.2–16)  14   (10–25)  19   (11–28)  14   (9.2–21)  14   (10–25)  22   (16–36)  
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We   found   that,   when   implemented   alone,   none   of   these   shorter-duration   interventions   were  
able   to   decrease   the   healthcare   need   to   below   available   capacity.   We   estimated   that   neither  
school   closures,   social   distancing,   elderly   shielding,   or   self-isolation   alone   would   reduce    R 0  
enough   to   lead   to   a   substantial   decline   in   the   total   number   of   cases   ( Fig.   2c ).   In   particular,  
school   closures   had   a   limited   impact   in   our   projections,   despite   our   model   accounting   for  
substantial   asymptomatic   transmission   among   children.   This   contrasts   with   strategies   aimed  
at   suppressing   the   spread   of   pandemic   influenza,   for   which   school   closures   are   often   a   key  
intervention    [19] .   
 
Next,   we   sought   to   evaluate   the   potential   impact   of   combining   control   measures.   The   most  
comprehensive   of   these   involves   deploying   all   four   individual   strategies   at   the   same   time.  
This   combination   strategy   was   projected   to   have   a   more   marked   impact   on    R 0    ( Fig.   2c ),   and  
in   a   small   proportion   (8%)   of   simulations,   was   sufficient   to   halt   the   epidemic   altogether  
during   the   intervention   period.   However,   lifting   the   interventions   leads   to   a   rapid   resurgence  
of   cases   in   the   model,   even   when    R 0    had   been   kept   below   1   during   the   intervention   period.   
 
Triggering   of   interventions   
When   interventions   have   a   limited   duration,   their   impact   can   be   influenced   by   timing.   If  
interventions   are   triggered   at   the   same   time   across   all   locations,   they   may   arrive   too   early   in  
some   locations   and   too   late   in   others.   We   therefore   estimated   the   impact   of   triggering  
interventions   at   different   times,   both   nationally   and   at   a   local   level.   We   projected   that  
triggering   interventions   locally   instead   of   nationally   could   modestly   reduce   the   total   number  
of   cases   and   deaths,   as   well   as   reduce   peak   demands   on   the   healthcare   system   ( Fig.   3a,   b;  
Table   S3 ).   However,   our   simulations   do   not   account   for   any   differences   in   the  
implementation   of   or   adherence   to   control   measures   which   might   arise   from   these   timings  
varying   in   different   parts   of   the   country.   Examining   the   simulated   dynamics   at   a   county   level  
( Fig.   3c )   shows   that   the   timing   of   local   epidemics   may   vary   among   counties,   and   highlights  
that   epidemics   at   a   local   level   are   predicted   to   peak   more   sharply   than   they   do   across   the  
entire   UK.  
 
Our   projections   also   showed   that,   when   only   a   short   intervention   is   deployed,   rather   than  
centring   measures   over   the   peak   (as   predicted   in   the   absence   of   control   measures),   it   was  
preferable   to   trigger   the   intervention   later   in   order   to   minimise   the   total   health   burden   ( Fig.  
3b ).   This   is   because   the   introduction   of   control   measures   will   change   the   timing   of   the   peak  
relative   to   the   baseline   scenario   ( Fig.   3a ).   In   particular,   the   most   effective   timing   for  
introduction   of   measures   could   involve   a   delay   of   as   much   as   four   weeks   ( Fig.   3b ).   However,  
optimally   timing   an   intervention   may   be   more   difficult   in   practice   than   these   scenarios  
suggest,   since   here   they   are   run   with   complete   knowledge   of   when   the   simulated   peak  
would   occur   in   the   absence   of   any   intervention.  
 
We   concluded   that   a   period   of   intense   restrictions   on   interpersonal   contacts,   combined   with  
shielding   the   most   vulnerable   members   of   society,   had   the   potential   to   substantially   reduce  
the   burden   of   COVID-19   for   as   long   as   they   were   in   place—but   that   this   strategy   alone,  
particularly   if   enacted   only   over   relatively   short   timeframes,   would   not   substantially   reduce  
the   overall   impact   of   the   COVID-19   epidemic.  
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Fig.   3.   Local   versus   national   triggering   and   timing   of   interventions.    (a)   Dynamics   of   the   epidemic  
under   local   versus   national   triggers   for   introduction   of   interventions   (pink   shaded   regions).   Blue  
shaded   regions   show   regular   school   closures,   while   the   pink   shaded   region   shows   the   intervention  
period.   Bolded   lines   show   daily   incidence   of   cases   in   the   median   simulation   under   each   scenario.   (b)  
Summary   of   simulated   outputs,   in   total   number   of   clinical   cases,   deaths,   clinical   cases   in   peak   week,  
peak   ICU   beds   required,   peak   non-ICU   beds   required,   and   the   time   from   seeding   until   peak   of   the  
epidemic   (c)   Illustration   of   peak   timings   of   new   cases   varying   across   two   counties   in   the   UK,   in  
comparison   with   predicted   national   trends,   for   a   single   simulation   with   no   control   interventions.   Case  
incidence   at   a   local   scale   is   expected   to   rise   and   fall   more   rapidly   than   case   incidence   across   the  
country   as   a   whole.  
 
 
Leisure   activities   and   older-adult   care   of   children  
As   other   countries   in   Europe   began   restricting   mass   gatherings,   there   was   a   question   about  
the   impact   such   measures   might   have   in   the   UK,   with   a   particular   focus   on   stopping  
spectator   sports    [20] .   By   analysing   the   total   attendance   at   spectator   sports   in   the   UK,   we  
performed   additional   simulations   to   evaluate   the   potential   impact   of   such   restrictions   ( Fig.  
4a,   Table   S2 ).   Although   yearly   attendance   at   sporting   events   is   high   (75.1   million   spectators  
per   year    [21] ),   even   if   we   assume   that   people   make   the   equivalent   of   their   mean   daily  
physical   contacts   at   such   events   (i.e.   5   contacts   per   person,   to   make   a   total   of   375   million),  
this   number   is   very   low   relative   to   the   number   of   yearly   contacts   which   occur   outside   the  
context   of   sporting   events   (269   billion    [12] ).   We   estimated   that   stopping   spectator   sports  
would   have   little   direct   effect   on   the   number   of   cases   ( Fig.   4a,   Table   S4 ).   We   simulated   a  
more   general   reduction   in   leisure   contacts—which   mainly   occur   in   pubs,   bars,   restaurants  
and   cinemas—by   reducing   leisure   contacts   by   75%,   and   found   a   larger   (though   still   modest)  
impact   on   the   epidemic.   Previous   work   on   pandemic   influenza   has   estimated   that   many  
individuals   are   likely   to   choose   to   avoid   such   settings,   as   they   perceive   them   to   be   risky    [22] .  
 
We   also   evaluated   the   potential   impact   of   schoolchildren   being   cared   for   by   grandparents  
during   weekdays   as   a   result   of   school   closures,   because   of   concerns   over   whether   this  
might   counteract   the   benefit   of   closing   schools   as   a   result   of   higher-risk   older   adults   being  
exposed   to   more   transmission   from   children.   We   found   that,   over   a   period   of   school   closure  
from   17th   March   to   1st   September,   one   additional   contact   per   weekday   between   children  
under   15   and   an   older   individual   (at   least   55   years   older   than   the   child)   could,   in   the   worst  
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case   (i.e.   high    R 0 ),   almost   entirely   eliminate   the   benefit   of   closing   schools   in   terms   of   the  
number   of   deaths   and   peak   ICU   bed   occupancy   over   this   period   ( Fig.   4b,   Table   S5 ).   
 

 
Fig.   4.   Impact   of   reducing   leisure   events   and   impact   of   increased   childcare   from   older   age  
groups.    (a)   Effect   of   banning   spectator   sports,   and   decreasing   leisure   activities   on   the   total   cases,  
total   deaths,   and   peak   number   of   cases,   ICU   beds,   non-ICU   beds,   and   the   time   to   peak   week   in   the  
simulated   epidemics.   The   “Background”   to   which   these   interventions   are   compared   is   school   closures  
plus   elderly   shielding.   (b)   Effect   of   varying   increases   in   contacts   between   children   and   older   adults  
during   school   closures   and   effect   on   the   total   cases,   total   deaths,   and   peak   number   of   cases,   ICU  
beds,   non-ICU   beds,   and   the   time   to   peak   week   in   the   simulated   epidemics.   The   “Background”   to  
which   these   interventions   are   compared   is   the   “Intensive   Interventions”   of   Table   2,   without   any  
additional   period   of   school   closure.   
 
 
Intensive   interventions   and   lockdown  
As   well   as   single   12-week   measures,   during   the   first   half   of   March   2020   we   also   analysed  
the   impact   of   longer-term   and   repeated   interventions.   On   March   16th   2020,   our   group   was  
advised   that,   supported   by   the   results   of   modelling   analyses   from   multiple   sources   (including  
our   preliminary   projections),   a   package   of   intensive   interventions   would   be   put   in   place,  
including   a   significant   programme   of   social   distancing,   with   a   particular   impact   on   leisure  
activities;   workers   being   asked   to   work   from   home   where   possible;   shielding   of   both   elderly  
(70+)   individuals   and   people   in   high-risk-groups   of   all   ages;   school   closures;   and  
self-isolation   of   symptomatic   individuals.   With   these   more   concrete   proposals,   we   updated  
our   model   to   estimate   the   likely   impact   of   the   proposed   strategy.   We   projected   that   the  
intensive   interventions   being   proposed   had   the   potential   to   delay   the   peak   of   the   epidemic   by  
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8   weeks   on   average   (95%   prediction   interval:   1–50   weeks),   and   to   reduce   the   total   number  
of   deaths   by   half   ( Fig.   5a;   Table   5 ).   
 
In   spite   of   this   substantial   reduction   in   burden,   the   projections   still   showed   a   large   number   of  
cases   (6.6–21   million),   and   a   large   number   of   ICU   beds   (12–140   thousand)   occupied   during  
the   peak   of   the   epidemic   ( Fig   5b ).   Indeed,   we   projected   that   ICU   bed   capacity   could   be  
exceeded   by   5-fold   or   more   for   several   weeks.   While   we   could   not   explicitly   predict   the  
impact   of   this   on   mortality   rates,   this   would   likely   lead   to   an   increased   case   fatality   ratio.  
 
We   had   previously   presented   scenarios   on   11th   March   showing   that   shorter,   repeated  
periods   of   particularly   strict   restrictions   on   movement—“lockdowns”—could   be   used   to  
supplement   a   longer-term,   more   moderate   package   of   interventions,   with   lockdowns   to   be  
deployed   as   needed   to   prevent   the   resources   of   the   health   system   becoming   overburdened.  
Accordingly,   we   supplemented   the   intensive   interventions   with   lockdowns   phased   in   when  
ICU   bed   capacity   reached   certain   thresholds,   which   would   be   kept   in   place   until   ICU   bed  
usage   fell   back   below   the   same   trigger   threshold,   to   then   be   brought   in   again   as   needed.   
 
We   found   that   adding   these   periods   of   lockdown   would   still   result   in   a   high   number   of   ICU  
beds   being   occupied,   but   at   much   lower   levels   than   the   scenario   without   lockdowns   ( Fig.  
5a ).   Lockdown   periods   were   sufficient   to   bring    R 0    near   or   below   1   ( Fig.   5c ),   and   hence   to  
lead   to   a   reduction   in   total   COVID-19   cases   ( Fig.   5b ).   We   found   that,   depending   on   the  
threshold   ICU   bed   occupancy   at   which   lockdown   periods   were   triggered,   there   was   a  
tradeoff   between   having   fewer,   longer   lockdown   periods   (lower   threshold)   and   having   more,  
shorter   lockdown   periods   (higher   threshold),   with   the   higher   thresholds   resulting   in   less   time  
spent   in   lockdown   overall,   but   higher   peak   demands   on   ICU   bed   capacity   ( Table   5 ).   Lower  
thresholds   also   resulted   in   more   individuals   remaining   susceptible   at   the   end   of   the  
simulation   period,   potentially   increasing   the   total   duration   for   which   recurrent   lockdowns  
would   need   to   be   maintained.   We   assumed   that   lockdowns   would   be   triggered   at   a   national  
level   rather   than   at   a   local   level,   and   that   the   trigger   threshold   would   not   change   over   time.  
There   are   likely   to   be   better   strategies   for   selecting   timing   and   duration   of   lockdowns.  
However,   we   presented   our   results   as   supporting   evidence   that   periodic   lockdowns   could  
reduce   the   burden   of   COVID-19   without   measures   being   in   place   indefinitely.  
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Fig.   5.   Projected   impact   of   intensive   control   measures   with   reactive   lockdowns.    (a)   Dynamics   of  
the   epidemic   under   different   triggers   for   introduction   and   lifting   of   lockdowns   (median   timing   of  
lockdowns   shown   as   grey   shaded   areas).   Bolded   lines   show   ICU   bed   occupancy   in   the   median   run  
under   each   scenario.   Horizontal   guides   show   the   estimated   number   of   ICU   beds   in   the   UK   as   of  
January   2020   (solid   line)   and   with   a   hypothetical   doubling   of   capacity   (dashed   line).   Blue   shaded  
regions   show   school   closures,   while   the   pink   shaded   region   shows   a   background   period   of   intensive  
interventions.   (b)   Summary   of   epidemic   runs.   (c)   Estimated   distribution   of    R 0    under   three   different  
interventions:   intensive   social   distancing   with   schools   open   and   closed,   and   lockdown.  
 
Table   5.   Projected   impact   of   intensive   control   measures   and   lockdown   in   the   United   Kingdom.    Median   and  
95%   prediction   interval   reported.   Totals   are   calculated   up   to   December   31,   2021.  

statistic  Intensive   Interventions  Lockdown   with  
1000-bed   trigger  

Lockdown   with  
2000-bed   trigger  

Lockdown   with  
5000-bed   trigger  

Total   cases*  11   M   (6.6   M–21   M)  4   M   (1.8   M–12   M)  6.5   M   (3   M–14   M)  9.7   M   (5.2   M–17   M)  

Total   deaths*  130   k   (73   k–270   k)  51   k   (21   k–170   k)  84   k   (34   k–200   k)  130   k   (60   k–240   k)  

Cases   in   peak   week  820   k   (330   k–3.2   M)  110   k   (79   k–800   k)  190   k   (110   k–1.1   M)  330   k   (200   k–1.5   M)  

Deaths   in   peak   week  9.3   k   (3.5   k–40   k)  1.4   k   (850–11   k)  2.3   k   (1.3   k–15   k)  3.7   k   (2.3   k–20   k)  

Peak   ICU   beds  
required  

33   k   (12   k–140   k)  5   k   (3.2   k–39   k)  8.1   k   (4.8   k–55   k)  13   k   (8.4   k–71   k)  

Peak   non-ICU   beds  
required  

62   k   (23   k–270   k)  9.4   k   (6.2   k–73   k)  16   k   (9   k–100   k)  26   k   (16   k–130   k)  

Time   to   peak   cases  
(weeks)  

19   (9.2–66)  60   (8–96)  46   (8–71)  34   (8–63)  

Proportion   of   time  
spent   in   lockdown   (29  
Jan   2020–31   Dec   2021)  

–  0.73   (0.27–0.9)  0.61   (0.23–0.77)  0.35   (0.12–0.5)  

Total   infected*  28   M   (18   M–48   M)  11   M   (4.3   M–33   M)  18   M   (6.9   M–36   M)  27   M   (12   M–41   M)  

*   Simulations   were   run   to   December   31,   2021,   so   total   cases,   deaths,   and   infections   under   the  
lockdown   strategies   may   not   reflect   the   full   number   during   the   entire   epidemic.  
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Discussion  
Using   an   age-structured   transmission   dynamic   model,   we   explored   different   scenarios   for  
COVID-19   transmission   and   control   in   the   UK.   We   found   that   moderate   interventions   lasting  
for   12   weeks,   such   as   school   closures,   self-isolation   or   shielding   of   elderly   groups,   would  
likely   not   have   been   sufficient   to   control   the   epidemic   and   to   avoid   far   exceeding   available  
ICU   capacity,   even   when   these   measures   were   used   in   combination.   However,   we   estimated  
that   a   scenario   in   which   more   intense   lockdown   measures   were   implemented   for   shorter  
periods   may   be   able   to   keep   projected   case   numbers   at   a   level   that   would   not   overwhelm  
the   health   system.  
 
The   model   presented   here   is   subject   to   several   limitations.   Because   the   model   does   not  
explicitly   structure   individuals   by   household,   we   are   unable   to   evaluate   the   impact   of  
measures   based   on   household   contacts,   e.g.   household   quarantine,   i.e.,   where   all   members  
of   a   household   with   a   suspected   COVID-19   case   remain   in   isolation.   Such   contact-targeted  
measures   could   increase   the   impact   of   a   package   of   interventions   by   limiting   spread   in   the  
community.   However,   the   presence   of   asymptomatic   infections    [23]    means   that   isolation  
based   on   symptomatic   case   identification   would   be   unlikely   to   fully   prevent   ongoing  
transmission.   We   also   do   not   include   individual   level   variation   in   transmission   (i.e.  
‘superspreading   events’,    [24] ).   There   are   several   examples   of   such   events   for   COVID-19  
[25] ,   and   individual-level   variation   is   likely   important   in   influencing   the   success   of   control  
measures   in   the   very   early   stages   of   an   outbreak    [5] .   However,   as   outbreaks   of  
directly-transmitted   infections   become   larger,   the   population-level   dynamics   will  
predominantly   be   driven   by   the   average   mixing   pattern   between   key   epidemiological   groups,  
particularly   between   different   ages    [11,26] .   We   therefore   used   a   stochastic   model  
implementation   to   capture   variation   in   these   population-level   dynamics.   We   also   assumed  
that   subclinically-infected   individuals   were   50%   as   infectious   as   clinical   cases.   A   study   of  
2,147   close   contacts   in   Ningbo,   China   estimated   that   the   mean   onward   transmission   from  
asymptomatic   infections   was   65%   (95%   HDI:   20–120%)   that   of   symptomatic   cases    [23] .  
However,   symptomatic   cases   were   found   to   be   more   likely   to   generate   new   symptomatic  
infections   compared   to   asymptomatic   infections.   This   suggests   that   the   overall   relative  
contribution   of   asymptomatic   individuals   to   new   infections   may   be   lower   than   65%,   and  
hence   50%   is   a   plausible   assumption.   We   used   mixing   matrices   for   the   UK   measured   in  
2006    [12] ,   and   changes   in   contact   patterns   since   then   may   alter   the   potential   effect   of  
interventions.   The   fractions   of   hospitalisation,   ICU   use,   and   death   are   estimated   using   data  
from   China,   and   any   differences   in   UK   populations   could   affect   our   estimates   of   health   care  
demand.  
 
The   results   we   present   here   summarize   the   key   analyses   and   scenarios   we   presented   to  
decision   makers   during   February   and   March   2020,   which   evolved   continuously   as   additional  
information   became   available.   A   reasonable   worst-case   scenario   with   and   without   school  
closures,   focusing   on   Birmingham   as   an   illustrative   example,   was   presented   to   the   Scientific  
Pandemic   Influenza   Group   on   Modelling   (SPI-M),   which   gives   expert   advice   to   the   UK  
Department   of   Health   and   Social   Care   and   wider   UK   government,   on   26th   February   2020.  
This   was   followed   by   an   exploration   of   national-level   impact   of   shorter-duration   interventions  
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(as   in    Fig.   2 )   presented   on   2nd   March   2020,   which   explored   various   assumptions  
concerning   intervention   length   and   efficacy.   We   expanded   our   analysis   to   explicitly   cover   all  
counties   in   England   and   analysed   the   timing   of   measures,   and   local   versus   national  
deployment   of   interventions   (as   in    Fig.   3 ),   on   8th   March   2020.   Our   analyses   of   the   impact   of  
curtailing   sporting   events   and   leisure   activities   (as   in    Fig.   4a ),   and   of   the   potential   impact   of  
repeated   lockdown   measures   (as   in    Fig.   5 ),   were   presented   on   11th   March   2020.   Our  
sensitivity   analysis   for   increased   child-grandparent   contacts   (as   in    Fig.   4b )   was   presented  
on   17th   March   2020.   The   results   shown   in   the   main   text   are   based   on   the   final   version   of   the  
model,   and   reflect   our   current   state   of   knowledge   about   the   transmission   dynamics   of  
COVID-19.   However,   our   overall   conclusions   about   the   relative   effectiveness   of   different  
strategies   for   reducing   the   burden   of   COVID-19   in   the   UK   are   the   same   as   those   presented  
to   decision   makers   in   real-time.  
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Supplementary   Information  
 
Dynamic   transmission   model  
We   analyse   a   stochastic   compartmental   model   ( Fig.   1 )   stratified   into   5-year   age   bands,   with  
time   approximated   in   discrete   6-hour   steps.   The   model   tracks   66.4   million   UK   residents  
aggregated   to   the   186   county-level   administrative   units   across   England,   Wales,   Scotland,  
and   Northern   Ireland.   We   run   50   stochastic   realizations   for   each   projection.  
 
We   assume   that   the   population   initially   consists   of   susceptible   individuals   (S),   who   become  
exposed   (E)   after   effective   contact   with   an   infectious   person.   After   an   incubation   period  
lasting   4   days   on   average,   exposed   individuals   of   age    i    will   develop   either   a   clinical   infection  
with   probability   ,   or   a   subclinical   infection   with   probability   .   Clinical   cases   begin   with yi  1 ­ yi  
a   preclinical   but   infectious   (I P )   state   lasting   1.5   days   on   average;   these   individuals   then  
progress   to   a   clinically   infected   state   (I C ),   which   we   assume   marks   the   onset   of   a   clinical  
case.   We   assume   that   subclinical   infections   (I S )   are   half   as   transmissible   as   preclinical   and  
clinical   infections.   Regardless   of   whether   they   are   clinically   or   subclinically   infected,  
individuals   remain   infectious   for   5   days   on   average   and   are   then   removed   (R)   from   the  
infectious   state;   we   assume   that   removed   individuals   are   immune   to   reinfection   over   the   1–2  
years   over   which   we   simulated   the   epidemic.   Hospitalisations   and   deaths   from   COVID-19  
are   assumed   to   occur   among   clinical   cases   only,   and   we   assume   that   the   clinical   outcome   of  
a   case   does   not   impact   upon   transmission   dynamics.  
 
The   amount   of   time   a   given   individual   spends   in   states    E,   I P ,   I C ,   or    I S    is   drawn   from  
distributions   ,   or   ,   respectively   ( Table   S1 ).   The   force   of   infection   for   an , d , ddE   P   C dS  
individual   in   age   group    i    at   time    t ,   ,   where   t   is   defined   in   6   hour   time   steps.  

, (I I ) Nλi,t = u∑
 

j
cij,t P j + ICj + f S j / j  

is   the   rate   at   which   susceptible   individuals   enter   the   exposed   state.   Here,     is   an   individual’s u  
susceptibility   to   infection   upon   contact   with   an   infectious   person,     is   the   number   of   age- j cij,t  
individuals   contacted   by   an   age- i    individual   per   day   at   time    t ,      is   the   relative   infectiousness f  
of   a   subclinical   case,   and   is   the   effective   probability   that   a   random   age- j I I ) N  ( P j + ICj + f S j / j  
individual   is   infectious.   
 
To   calculate   the   basic   reproductive   number,    R 0 ,   defined   as   the   average   number   of   secondary  
infections   generated   by   a   typical   infectious   individual   in   a   fully   susceptible   population,   we  
define   the   next   generation   matrix   as  

  . GM c (y E(d ) 1 )fE(d )  N ij = u ij,t j P + dC + ( ­ yj S  
Then,    R 0    is   the   absolute   value   of   the   dominant   eigenvalue   of   the   next   generation   matrix.  
 
Key   parameters   of   the   transmission   model  
We   used   a   serial   interval   of   6.5   days   based   on   published   studies    [1,27,28] ,   and   assumed  
that   the   length   of   the   preclinical   period   was   30%   of   the   total   period   of   clinical   infectiousness  
[13] .   From   this,   we   fixed   the   mean   of   the   latent   period   to   4   days,   the   mean   duration   of  
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preclinical   infectiousness   to   1.5   days,   and   the   mean   duration   of   clinical   infectiousness   to   3.5  
days.  
 
The   basic   reproduction   number    R 0    was   estimated   by   synthesizing   the   results   of   a   literature  
review   ( Fig.   S1 ).   For   each   reported   value   of   the   basic   reproduction   number,   we   matched   a  
flexible   PERT   distribution   (a   shifted   beta   distribution   parameterised   by   minimum,   maximum,  
and   mode)   to   the   median   and   confidence   interval   reported   in   each   study.   We   sampled   from  
the   resulting   distributions,   weighting   each   study   equally,   to   obtain   estimates   of    R 0    for   our  
simulations.  
 
The   age-specific   clinical   fraction    y i    was   adopted   from   an   estimate   based   on   case   data   from   6  
countries    [11] ,   and   the   relative   infectiousness   of   subclinical   cases,    f ,   was   assumed   to   be  
50%   relative   to   clinical   cases,   as   we   assumed   in   a   previous   study    [11] .  
 
We   used   the   Office   for   National   Statistics   data   on   the   population   by   age   for   each   of   186  
county-level   subdivisions   of   the   UK    [29] ,   comprising   non-metropolitan   counties,   metropolitan  
counties,   unitary   authorities   and   London   boroughs   in   England;   unitary   authorities   in   Wales;  
council   areas   in   Scotland;   and   local   government   districts   in   Northern   Ireland   (hereafter  
referred   to   as   “counties”).   We   used   contact   data   from   the   POLYMOD   study    [12]    and   the   R  
package   socialmixr    [30]    to   generate   age-stratified   contact   matrices   for   the   UK,   generating  
separate   contact   matrices   for   each   county   according   to   the   population   structure   for   that  
county,   assuming   that   the   number   of   age- j    contacts   made   by   an   age- i    individual   scales   with  
the   number   of   age- j    individuals   in   a   county.  
 
We   assumed   that   epidemics   in   each   county   are   seeded   by   2   individuals   per   day   for   28   days;  
after   this   point,   further   seeding   has   very   little   impact   owing   to   extensive   community  
transmission.   Seeding   times   are   staggered   so   that   London   boroughs   are   seeded   on   a  
random   day   in   the   first   week   of   the   simulation,   and   other   locations   are   seeded   on   a   random  
day   in   the   first   four   weeks   of   the   simulation.   We   assume   that   transmission   between   counties  
is   negligible,   instead   allowing   the   staggered   seeding   of   infection   among   counties   to   simulate  
the   process   of   gradual   introduction   of   the   epidemic   across   the   UK.   The   start   date   of   the  
model   is   29th   January   2020,   which   we   chose   by   visually   aligning   model-predicted   deaths   to  
the   daily   number   of   COVID-19   deaths   reported   in   the   UK    [31]    up   to   27th   March.  
 
Hospital   burden   estimation  
To   calculate   ICU   and   non-ICU   beds   in   use   through   time,   we   scaled   age-stratified  
symptomatic   cases   by   age-specific   hospitalisation   and   critical   outcome   probability,   then  
summed   to   get   the   total   number   of   hospitalised   and   critical   cases.   We   then   distributed  
hospitalised   cases   over   time   based   on   expected   time   of   hospitalisation   and   duration  
admitted.   We   assumed   gamma-distributed   delays,   with   the   shape   parameter   set   equal   to   the  
mean,   for:   delay   from   symptom   onset   to   hospitalisation   of   mean   7   days   (standard   deviation  
2.65)    [32,33] ;   delay   from   hospitalisation   to   discharge   /   death   for   non-ICU   patients   of   mean   8  
days   (s.d.   2.83)    [34] ;   delay   from   hospitalisation   to   discharge   /   death   for   ICU   patients   of   mean  
10   days   (s.d.   3.16)    [33] ;   and   delay   from   onset   to   death   of   mean   22   days   (s.d.   4.69)    [32,33] .  
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We   calculated   the   age-specific   case   fatality   ratio   based   on   data   from   the   COVID-19   outbreak  
in   China   and   on   the   Diamond   Princess   cruise   ship.   We   first   calculated   the   naive   case   fatality  
ratio,   nCFR,   (i.e.   deaths/cases)   for   each   age   group,   then   scaled   down   the   naive   CFR   based  
on   a   correction   factor   estimated   from   data   from   the   Diamond   Princess    [35]    to   give   an  
adjusted   CFR.   We   then   calculated   risk   of   hospitalisation   based   on   the   ratio   of   severe   and  
critical   cases   to   cases   (18.5%)   and   deaths   to   cases   (2.3%)   in   the   early   China   data,   which   we  
took   to   imply   8.04   times   more   hospitalisations   than   deaths   in   each   age   group.   We   assumed  
all   age   groups   had   a   30%   risk   of   requiring   critical   care   if   hospitalised    [33] .  
 
Derivation   of   contact   rates   for   the   “Intensive   Interventions”   scenario  
For   the   “Intensive   Interventions”   scenario,   we   assumed   that   30%   of   workers   would   be   able   to  
work   from   home    [36] ,   reducing   work   and   transport   contacts   (11%   of   “other”   contacts)   among  
the   low-risk   general   population   (assumed   to   be   90%   of   adults   under   70)   by   30%.   We   also  
assumed   leisure   contacts   (45%   of   “other”   contacts)   would   decrease   by   75%   in   this  
population.   We   assumed   that   work   and   “other”   contacts   would   be   reduced   by   75%   among  
the   high-risk   general   population   (10%   of   under-70s)   through   shielding.   Among   those   aged   70  
and   above,   we   assumed   that   75%   of   work   and   other   contacts   would   be   reduced   through  
shielding;   we   then   further   reduced   transport   contacts   by   30%   and   leisure   contacts   by   75%.  
 
R 0    meta-analysis  
We   sampled   R 0    from   a   consensus   distribution   ( Fig.   S1 )   derived   from   published   sources  
available   at   the   time   projections   were   made.   We   sampled   across   all   studies,   with   each   study  
weighted   equally.   The   distribution   overall   has   a   mean    R 0    of   2.68,   with   a   standard   deviation   of  
0.57.   We   used   a   normal   distribution   with   these   parameters   for   our   simulations.  
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Supplementary   Figures  
 

 
Fig.   S1.   R 0    distribution   used.    Sources   used   can   be   found   among   refs.    [1,6,37–45] .  
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Supplementary   Tables  
 
Table   S1.   Model   parameters.  

Parameter  Description  Value  Reference  

dE  Latent   period   (E   to   I P    and   E   to   I S ;   days)  amma(μ .0, )~ g = 4 k = 4  [1,27,28]  

dP  Duration   of   preclinical   infectiousness   (I P     to   I C ;  
days)  

amma(μ .5, )~ g = 1 k = 4  [13]  

dC  Duration   of   clinical   infectiousness   (I C    to   R;   days)  amma(μ .5, )~ g = 3 k = 4  [1,27,28]  

dS  Duration   of   subclinical   infectiousness   (I S     to   R;  
days)  

amma(μ .0, )~ g = 5 k = 4  Assumed   to   be   the   same  
duration   as   total   infectious  
period   for   clinical   cases,  
including   preclinical  
transmission  

 Incubation   period   (E   to   I C ;   days)  ;   mean   5.5   days dE + dP  Derived  

 Serial   interval   (days)  ; y (d ) 1 )d ) 2  dE + ( i P + dC + ( ­ yi S /  
mean   6.5   days  

Derived  

u  Susceptibility   to   infection   on   contact  Calculated   from   R 0  Derived  

yi  Probability   of   clinical   symptoms   on   infection   for  
age   group    i  

Estimated   from   case  
distributions   across   6   countries  

[11]  

f  Relative   infectiousness   of   subclinical   cases  50%  Assumed  

cij  Number   of   age- j    individuals   contacted   by   an  
age- i    individual   per   day  

UK-specific   contact   matrix   [12]  

N i  Number   of   age- i    individuals  Demographic   data  [29]  

tΔ  Time   step   for   discrete-time   simulation  0.25   days   

 Delay   from   onset   to   hospitalisation   (days)  amma(μ , )~ g = 7 k = 7  [32,33]  

 Duration   of   hospitalisation   in   non-ICU   bed  
(days)  

amma(μ , )~ g = 8 k = 8  Duration   based   on   NHS   data  
for   J12:   viral   pneumonia,   not  
elsewhere   classified    [34] .  

 Duration   of   hospitalisation   in   ICU   bed   (days)  amma(μ 0, 0)~ g = 1 k = 1  [33]  

 Proportion   of   hospitalised   cases   that   require  
critical   care  

30%  [33]  

 Delay   from   onset   to   death   (days)  amma(μ 2, 2)~ g = 2 k = 2  [32,33]  
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Table   S2.   Age-specific   hospitalisation   and   fatality   risk.    Based   on   estimates   from   the   early  
COVID-19   outbreak   in   China    [4] .  

Age  
group  

Cases  
(China)  

Deaths  
(China)  

Pop.   (%;  
China)  

Naïve  
CFR  

Adjusted  
CFR  

Hospitalised  

0–9  416  0  12.0%  0.0%  0.00%  0.0%  

1–10  549  1  11.6%  0.2%  0.09%  0.8%  

20-29  3619  7  13.5%  0.2%  0.10%  0.8%  

30-39  7600  18  15.6%  0.2%  0.12%  1.0%  

40-49  8571  38  15.6%  0.4%  0.23%  1.9%  

50-59  10008  130  15.0%  1.3%  0.68%  5.4%  

60-69  8583  309  10.4%  3.6%  1.87%  15.1%  

70-79  3918  312  4.7%  8.0%  4.14%  33.3%  

80-89  1408  208  1.8%  14.8%  7.68%  61.8%  

 
 
Table   S3.   Projected   impact   of   control   measures   in   the   United   Kingdom   depending   upon   local  
versus   national   triggering   and   according   to   shift   from   centring   on   predicted   peak.    Median   and  
95%   prediction   interval   reported.   Totals   are   calculated   up   to   December   31,   2021.  
 Base  Local  

trigger  
National  
trigger  

Local  
trigger,   +2  
weeks  

National  
trigger,   +2  
weeks  

Local  
trigger,   +4  
weeks  

National  
trigger,   +4  
weeks  

Local  
trigger,   +8  
weeks  

National  
trigger,   +8  
weeks  

Total   cases  24   M  
(16  
M–30  
M)  

18   M   (11  
M–24   M)  

18   M   (11  
M–24   M)  

17   M   (10  
M–22   M)  

17   M   (11  
M–22   M)  

15   M   (9.4  
M–20   M)  

15   M   (9.3  
M–20   M)  

16   M   (8.2  
M–24   M)  

16   M   (8.6  
M–24   M)  

Total   deaths  370   k  
(250  
k–470  
k)  

280   k  
(160  
k–370   k)  

280   k   (150  
k–390   k)  

250   k   (150  
k–330   k)  

260   k   (150  
k–330   k)  

210   k   (130  
k–290   k)  

210   k   (130  
k–280   k)  

230   k   (110  
k–390   k)  

220   k   (120  
k–380   k)  

Cases   in  
peak   week  

4.2   M  
(2.5  
M–6.4  
M)  

3.1   M  
(1.1  
M–4.5   M)  

3.5   M   (1.2  
M–5.3   M)  

1.9   M   (1  
M–2.7   M)  

2.4   M   (1.2  
M–3.6   M)  

1.1   M   (630  
k–3.1   M)  

1.2   M   (670  
k–2.7   M)  

2.8   M   (760  
k–7.1   M)  

3.2   M   (970  
k–7.1   M)  

Deaths   in  
peak   week  

62   k   (35  
k–98   k)  

45   k   (16  
k–66   k)  

51   k   (17  
k–82   k)  

28   k   (15  
k–40   k)  

35   k   (17  
k–50   k)  

15   k   (9  
k–41   k)  

17   k   (10  
k–36   k)  

40   k   (9.5  
k–99   k)  

43   k   (12  
k–100   k)  

Peak   ICU  
beds  
required  

220   k  
(120  
k–360  
k)  

170   k   (57  
k–240   k)  

190   k   (61  
k–300   k)  

100   k   (53  
k–140   k)  

130   k   (59  
k–180   k)  

54   k   (32  
k–150   k)  

59   k   (37  
k–130   k)  

140   k   (34  
k–380   k)  

160   k   (44  
k–380   k)  

Peak  
non-ICU  
beds  
required  

420   k  
(230  
k–670  
k)  

310   k  
(110  
k–450   k)  

350   k   (120  
k–570   k)  

190   k   (100  
k–270   k)  

240   k   (110  
k–350   k)  

100   k   (61  
k–280   k)  

110   k   (70  
k–240   k)  

270   k   (64  
k–720   k)  

300   k   (84  
k–730   k)  

Time   to  
peak   cases  
(weeks)  

11  
(8.2–16)  

22  
(15–36)  

22   (16–36)  23   (12–37)  23   (12–37)  13  
(9.2–38)  

24   (10–38)  13  
(9.2–18)  

13   (9.2–18)  

 
  

24  

https://paperpile.com/c/8fU0iF/lczB


 

Table   S4.   Projected   impact   of   control   measures   relating   to   leisure   activities   in   the   United  
Kingdom.    Median   and   95%   prediction   interval   reported.   Totals   are   calculated   up   to   September   1st,  
2020.  
 Background  Spectator   sports   banned  Leisure   reduced   by   75%  

Total   cases  15   M   (2.9   M–22   M)  15   M   (2.8   M–22   M)  12   M   (470   k–21   M)  

Total   deaths  170   k   (18   k–310   k)  170   k   (18   k–310   k)  140   k   (3.3   k–300   k)  

Cases   in   peak   week  1.8   M   (310   k–4.7   M)  1.8   M   (310   k–4.7   M)  1.2   M   (47   k–3.9   M)  

Deaths   in   peak   week  21   k   (2.7   k–61   k)  21   k   (2.6   k–60   k)  14   k   (360–49   k)  

Peak   ICU   beds   required  76   k   (11   k–220   k)  76   k   (10   k–220   k)  51   k   (1.5   k–180   k)  

Peak   non-ICU   beds   required  140   k   (20   k–410   k)  140   k   (19   k–410   k)  96   k   (2.8   k–340   k)  

Time   to   peak   cases   (weeks)  15   (9.2–30)  15   (9.2–30)  17   (10–30)  

 
Table   S5.   Projected   impact   of   school   closures,   depending   upon   additional   contact   between  
children   and   the   elderly,   in   the   United   Kingdom.    Median   and   95%   prediction   interval   given.   Totals  
are   calculated   up   to   July   20th,   2020.   “Care   by   elders”   denotes   the   percentage   of   children   under   15   for  
which   one   additional   daily   contact   with   an   individual   55   years   older   or   more   is   added   to   simulations  
during   school   closures.  
statistic  Background  School   closure  School   closure,  

20%   care   by   elders  
School   closure,  
50%   care   by   elders  

School   closure,  
100%   care   by  
elders  

Total   cases  11   M   (400   k–21   M)  8.5   M   (64   k–20   M)  8.7   M   (66   k–21   M)  8.9   M   (63   k–21   M)  9.3   M   (75   k–21   M)  

Total   deaths  130   k   (2   k–280   k)  71   k   (550–270   k)  73   k   (590–280   k)  78   k   (530–290   k)  86   k   (650–300   k)  

Cases   in   peak  
week  

1.4   M   (63   k–3.8   M)  780   k   (3.5   k–3.1   M)  790   k   (3.6   k–3.1   M)  820   k   (3.4   k–3.2   M)  860   k   (4.5   k–3.3   M)  

Deaths   in   peak  
week  

16   k   (320–48   k)  8.8   k   (40–39   k)  9.1   k   (49–40   k)  9.6   k   (42–42   k)  11   k   (54–44   k)  

Peak   ICU   beds  
required  

56   k   (1.7   k–170   k)  31   k   (140–140   k)  32   k   (140–140   k)  34   k   (150–150   k)  38   k   (180–160   k)  

Peak   non-ICU  
beds   required  

110   k   (3.4   k–320   k)  59   k   (260–260   k)  61   k   (250–270   k)  64   k   (260–280   k)  71   k   (330–300   k)  

Time   to   peak  
cases   (weeks)  

16   (9.2–24)  18   (8.5–23)  20   (8.5–23)  18   (8.5–23)  18   (8.5–23)  
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